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VISION-BASED MACHINE LEARNING
MODEL FOR AGGREGATION OF STATIC
OBJECTS AND SYSTEMS FOR
AUTONOMOUS DRIVING

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims priority to U.S. Prov. Pat.
App. No. 63/260439 titled “ENHANCED SYSTEMS AND
METHODS FOR AUTONOMOUS VEHICLE OPERA-
TION AND TRAINING” and filed on Aug. 19, 2021. This

application claims priority to U.S. Prov. Pat. App. No. 63/

287936 titled “ENHANCED SYSTEMS AND METHODS
FOR AUTONOMOUS VEHICLE OPERATION AND
TRAINING” and filed on Dec. 9, 2021. Each of the above-
recited applications 1s hereby incorporated herein by refer-
ence 1n 1ts entirety.

BACKGROUND
Technical Field

[0002] The present disclosure relates to machine learning
models, and more particularly, to machine learning models
using vision information.

Description of Related Art

[0003] Neural networks are relied upon for disparate uses
and are increasmgly forming the underpmnings ot technol-
ogy. For example, a neural network may be leveraged to
perform object classification on an image obtained via a
user device (e.g., a smart phone). In this example, the neural
network may represent a convolutional neural network
which applies convolutional layers, pooling layers, and
one or more fully-connected layers to classity objects
depicted 1n the image. As another example, a neural network
may be leveraged for translation of text between languages.
For this example, the neural network may represent a recur-
rent-neural network.

[0004] Complex neural networks are additionally being
used to enable autonomous or semi-autonomous driving
functionality for vehicles. For example, an unmanned aerial
vehicle may leverage a neural network, 1n part, to enable
navigation about a real-world area. In this example, the
unmanned aerial vehicle may leverage sensors to detect
upcoming objects and navigate around the objects. As
another example, a car or truck may execute neural net-
work(s) to navigate about a real-world arca. At present,
such neural networks may rely upon costly, or error-prone,
sensors. Additionally, such neural networks may lack accu-
racy with respect to detecting and classifying moving and
stationary (e.g., fixed) objects causing deficient autonomous
or semi-autonomous driving performance.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG. 1A 1s a block diagram 1llustrating an example
autonomous or semi-autonomous vehicle which mcludes a
multitude of 1mage sensors an example processor system.
[0006] FIG. 1B 1s a block diagram illustrating the example
processor system determiming static mformation based on
recerved mmage information from the example 1mage
SENSors.
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[0007] FIG. 2 1s a block diagram of an example vision-
based machine learning model which includes an example
birds-eye view network.

[0008] FIG. 3A 1s a block diagram illustrating detail of the
example birds-eye view network.

[0009] FIG. 3B 1s a block diagram illustrating an example
birds-eye view associated with a virtual camera.

[0010] FIG. 4A 1illustrates an example output associated
with the birds-eye view network.

[0011] FIG. 4B illustrates another example output asso-
ciated with the birds-eye view network.

[0012] FIG. 4C illustrates another example output asso-
ciated with the birds-eye view network.

[0013] FIG. 4D 1llustrates another example output asso-
ciated with the birds-eye view network.

[0014] FIG. 4E illustrates another example output asso-
ciated with the birds-eye view network.

[0015] FIG. 4F illustrates another example output asso-
ciated with the birds-eye view network.

[0016] FIG. 4G illustrates another example output asso-
ciated with the birds-eye view network.

[0017] FIG. 4H 1illustrates another example output asso-
ciated with the birds-eye view network.

[0018] FIG. 41 illustrates another example output asso-
ciated with the birds-eye view network.

[0019] FIG. 4] illustrates another example output asso-
ciated with the birds-eye view network.

[0020] FIG. 4K 1illustrates another example output asso-
ciated with the birds-eye view network.

[0021] FIG. 4L 1illustrates another example output asso-
ciated with the birds-eye view network.

[0022] FIG. 4M 1illustrates another example output asso-
ciated with the birds-eye view network.

[0023] FIG. 4N 1llustrates another example output asso-
ciated with the birds-eye view network.

[0024] FIG. 40 1illustrates another example output asso-
ciated with the birds-eye view network.

[0025] FIG. 5 15 a flowchart of an example process for
determining static mformation positioned about an autono-
mous or semi-autonomous vehicle using a vision-based
machine learning model.

[0026] FIG. 6 1s a block diagram 1llustrating an example
vehicle which 1ncludes the example processor system.

DETAILED DESCRIPTION

[0027] Embodiments of the present disclosure and their
advantages are best understood by referring to the detailed
description that follows. It should be appreciated that like
reference numerals are used to i1dentity like elements 1llu-
strated mm one or more of the figures, wherein showings
therein are for purposes of illustrating embodiments of the
present disclosure and not for purposes of limiting the same.

Introduction

[0028] This application describes enhanced techniques for
autonomous or semi-autonomous (collectively reterred to
herein as autonomous) driving of a vehicle using 1mage sen-
sors (€.g., cameras) positioned about the vehicle. Thus, the
vehicle may navigate about a real-world area using vision-
based sensor information. As may be appreciated, humans
are capable of driving vehicles using vision and a deep
understanding of their real-world surroundings. For exam-
ple, humans are capable of rapidly 1dentifymng objects (e.g.,
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pedestrians, road signs, lane markings, vehicles) and using
these objects to mform driving of vehicles. Increasingly,
machine learning models are capable of i1dentifying and
characterizing objects positioned about vehicles. However,
such machine learning models are prone to errors introduced
through unsophisticated models and/or inconsistencies
introduced through disparate sensors.

[0029] This application therefore describes a vision-based
machine learning model which relies upon increased soft-
ware complexity to enable a reduction 1 sensor-based hard-
ware complexity while enhancing accuracy. For example,
only 1mage sensors may be used i some embodiments.
Through use of mmage sensors, such as cameras, the
described model enables a sophisticated simulacrum of
human wvision-based driving. As will be described, the
machine learning model may obtain mmages from the
1mage sensors and combine (e.g., stitch or fuse) the informa-
tion 1included therem. For example, the information may be
combined mto a vector space which 1s then further pro-
cessed by the machine learming model to extract objects,
signals associated with the objects, and so on.

[0030] In contrast, another example technique may
include 1dentifymg objects mcluded 1n 1mages from each
image sensor. These objects may then be aggregated to
determine a consistent set of objects m the images. For
example, a first 1mage sensor (e.g., a left 1mage sensor)
may depict a portion of a truck positioned to the left of a
vehicle. In this example, a second 1mage sensor (e.g., a
front wide-angle sensor) may include another portion of
the truck. Thus, this example technique may require that
the portions of the truck be separately identified and then
combined mto a view of the truck. Such a combination
may rely upon hand-tuned models and code which may
introduce errors and be difficult to update. In contrast, the
techmques described herein allow for the machine learning
model to detect objects based on the vector space described
above. For example, the machine learning model may effec-
tuate a unified prediction, doing the job of stitching these
different views internally by mterpreting all images as one.
[0031] Furthermore, and as will be described, to it
occlusion of objects and ensure substantial range of visibi-
lity of objects, the information may be projected 1n a vector
space according to a birds-eye view. As described herein,
the birds-eye view represents a view of a real-world envir-
onment about a vehicle in which a virtual camera 1s pointing
downwards at a particular height. Thus, objects positioned
about the vehicle are projected nto this birds-eye view vec-
tor space effectuating the accurate identification of certamn
types of objects.

[0032] As may be appreciated, the birds-eye view may
include objects within a threshold distance of the vehicle.
For certain types of objects, this type of projection view
may be advantageous to an understanding of the real-
world environment. In some embodiments, the described
model may 1dentify, or determine information regarding,
static objects or static mformation associated with the real-
world environment. Example static objects or mformation
may 1nclude lane markings, crosswalks, bike lanes, direc-
fion of travel for a road or lane therein, intersections, con-
nectivity between lanes which are separated via an mtersec-
tion, and so on. Additionally, static nformation may include
visibility mformation (e.g., measures associated with what
the 1mage sensors can see). This visibility information may
include moving objects 1 some embodiments, for example
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1if another vehicle 1s occluding a portion of a road the visi-
bility mformation may indicate that this portion of not
visible.

[0033] Without being constramned by way of example, a
static object may represent a real-world object, marking,
indicator, sign, feature, or characteristic of a real-world
environment (€.g., direction of travel 1n a lane), which 1s
expected to be substantially the same or generally unaltered
as an autonomous vehicle navigates. A static object may
also represent an object or information which 1s not a vul-
nerable or non-vulnerable road user (e.g., a vehicle, a per-
son, a biker, a stroller, and so on). As an example, a lane may
be expected to have traffic flow 1 a same direction as the
autonomous vehicle navigates proximate to that lane. In this
example, and as may be appreciated, a governmental officer
(e.g., a police officer), or sign, may temporarily adjust the
direction of trafhic. This temporary adjustment may repre-
sent a feature or characteristic of the real-world environment
and thus may be a static object or imnformation which 1s
detectable via the machine learning model described herein.
[0034] With respect to the above-example static objects,
the birds-eye view may allow for a rapid understanding of
important elements which are relied upon to etfectuate
autonomous driving. Indeed, stationary objects may inform
the outlines of what 1s navigable 1n a real-world environ-
ment. For example, lane markings can be included i the
birds-eye view as would be seen on a navigation map. In
this example, the lane markings may be relied upon to
inform future navigation options which are available to an
autonomous vehicle. As another example, a bike-lane may
be 1dentified 1n the birds-eye view. For this example, the
route of the bike-lane may be determined based on the
image sensors positioned about the vehicle and updated as
the autonomous vehicle navigates. In this way, and as one
example, the vehicle may monitor for locations at which the
bike-lane merges with vehicle lanes.

[0035] The birds-eye view may thus aggregate static
objects which are detected proximate (e.g., 1n visual range)
of an autonomous vehicle.

[0036] The birds-eye view network described herein may
include disparate elements which, 1n some embodiments,
may be end-to-end tramed. As will be described, mmages
from 1mage sensors may be provided to respective backbone
networks. In some embodiments, these backbone networks
may be convolutional neural networks which output feature
maps for use later in the network. A transformer network,
such as a self-attention network, may receive the feature
maps and transform the information into an output vector
space. A feature queue may then push the output from the
transtformer network, optionally along with kinematics of a
vehicle (e.g., an autonomous vehicle), mto a queue which 1s
optionally spatially indexed. Output from the feature queues
may be provided to one or more video modules (e.g., video
queues) for processing. In some embodiments, a video mod-
ule may be a convolutional neural network, a recurrent
neural network, or a transformer network. Trunks of the
birds-eye view network may then obtain output, or a parti-
cular portion thereof, from the video module and generate
output mnformation using respective heads. Example output
information 1s described 1n more detail below with respect
to, at least, FIGS. 4A-40.

[0037] As described above, the feature queue may be spa-
tially mdexed. As may be appreciated, static mformation
may not be expected to be temporally variable. For example,




US 2023/0053785 Al

a road lane may be expected to be the same as the vehicle
moves spatially forward. In contrast, other vehicles, pedes-
trians, and so on, may be expected to vary in time due to
their own movements. Thus, the feature queue may be spa-
tially indexed such that information 1s aggregated over the
previous threshold distance. In this way, 1t the vehicle 1s
stuck 1 traffic and not moving then the vehicle may main-
tain 1ts consistent view of the real-world environment as

determined according to recent spatial movements.
[0038] 'Thus, the disclosed technology allows for enhance-

ments to autonomous driving models while reducing sensor-
complexity. For example, other sensors (e.g., radar, Lidar,
and so on) may be removed during operation of the vehicles
described herein. As may be appreciated, radar may 1ntro-
duce faults during operation of vehicles which may lead to
phantom objects being detected. Additionally, lidar may
introduce errors 1n certain weather conditions and lead to
substantial manufacturing complexity in vehicles.

[0039] While description related to an autonomous vehicle
(¢.g., a car) 1s mcluded herem, as may be appreciated the
techmques may be applied to other autonomous vehicles.
For example, the machine learning model described herein
may be used, 1n part, to autonomously operate unmanned
oround vehicles, unmanned aenal vehicles, and so on. Addi-
tionally, reference to an autonomous vehicle may, i some
embodiments, represent a vehicle which may be placed into
an autonomous driving mode. For example, the vehicle may
autonomously drive or navigate on a highway, freeway, and
so on. In some embodiments, the vehicle may autonomously
drive or navigate on city roads.

Block Diagram - Vehicle Processing System / Birds-
Eye View Network

[0040] FIG. 1A 1s a block diagram 1llustrating an example
autonomous vehicle 100 which includes a multitude of
1mage sensors 102A-102F and an example processor system
120. The mage sensors 102A-102F may include cameras
which are positioned about the vehicle 100. For example,
the cameras may allow for a substantially 360-degree view
around the vehicle 100.

[0041] The mage sensors 102A-102F may obtain 1mages
which are used by the processor system 120 to, at least,
determine mformation associated with objects positioned
proximate to the vehicle 100. The 1mages may be obtained
at a particular frequency, such as 30 Hz, 36 Hz, 60 Hz,
65 Hz, and so on. In some embodiments, certain 1mage sen-
sors may obtain 1mages more rapidly than other 1image sen-
sors. As will be described below, these 1mages may be pro-
cessed by the processor system 120 based on the vision-
based machine learning model described herein.

[0042] Image sensor A 102A may be positioned 1n a cam-
era housing near the top of the windshield of the vehicle
100. For example, the mmage sensor A 102A may provide
a forward view of a real-world environment 1n which the
vehicle 1s driving. In the 1llustrated embodiment, 1mage sen-
sor A 102A 1includes three 1mage sensors which are laterally
offset from each other. For example, the camera housing
may mclude three mmage sensors which point forward. In
this example, a first of the 1mage sensors may have a wide-
angled (e.g., fish-eye) lens. A second of the 1mmage sensors
may have a normal or standard lens (e.g., 35 mm equivalent
focal length, 50 mm equivalent, and so on). A third of the
1mage sensors may have a zoom or narrow-view lens. In this
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way, three images of varying tfocal lengths may be obtamed
in the forward direction by the vehicle 100.

[0043] Image sensor B 102B may be rear-facing and posi-
tioned on the left side of the vehicle 100. For example,
image sensor B 102B may be placed on a portion of the
fender of the vehicle 100. Similarly, Image sensor C 102C
may be rear-facing and positioned on the right side of the
vehicle 100. For example, mmage sensor C 102C may be
placed on a portion of the fender of the vehicle 100.

[0044] Image sensor D 102D may be positioned on a door
pillar of the vehicle 100 on the left side. This 1mage sensor
102D may, 1n some embodiments, be angled such that 1t
pomts downward and, at least in part, forward. In some
embodiments, the 1mage sensor 102D may be angled such
that 1t points downward and, at least 1n part, rearward. Simi-
larly, immage sensor E 102E may be positioned on a door
pillow of the vehicle 100 on the right side. As described
above, mmage sensor E 102E may be angled such that it
pomts downwards and either forward or rearward 1n part.
[0045] Image sensor F 102F may be positioned such that it
pomts behind the vehicle 100 and obtains 1mages 1n the rear
direction of the vehicle 100 (e.g., assuming the vehicle 100
1s moving forward). In some embodiments, 1mage sensor F
102F may be placed above a license plate of the vehicle 100.
[0046] While the illustrated embodiments mnclude 1mage
sensors 102A-102F, as may be appreciated additional, or
fewer, 1image sensors may be used and fall within the tech-
nmques described herem.

[0047] The processor system 120 may obtain 1mages from
the 1mage sensors 102A-102F and detect objects, and infor-
mation associated with the objects, using the vision-based
machine learning model described herein. Based on the
objects, the processor system 120 may adjust one or more
driving characteristics or features. For example, the proces-
sor system 120 may cause the vehicle 100 to turn, slow
down, brake, speed up, and so on. While not described
herein, as may be appreciated the processor system 120
may execute one or more planming and/or navigation
engines or models which use output from the vision-based
machine learning model to effectuate autonomous driving.
[0048] In some embodiments, the processor system 120
may 1mnclude one or more matrix processors which are con-
ficured to rapidly process nformation associated with
machine learning models. The processor system 120 may
be used, in some embodiments, to perform convolutions
associated with forward passes through a convolutional
neural network. For example, mnput data and weight data
may be convolved. The processor system 120 may include
a multitude of multiply-accumulate units which perform the
convolutions. As an example, the matrix processor may use
mnput and weight data which has been orgamized or for-
matted to facilitate larger convolution operations.

[0049] For example, mput data may be 1n the form of a
three-dimensional matrix or tensor (€.g., two-dimensional
data across multiple mput channels). In this example, the
output data may be across multiple output channels. The
processor system 120 may thus process larger mput data
by merging, or flattening, each two-dimensional output
channel mmto a vector such that the entire, or a substantial
portion thereof, channel may be processed by the processor
system 120. As another example, data may be efficiently re-
used such that weight data may be shared across convolu-
tions. With respect to an output channel, the weight data 106
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may represent weight data (e.g., kernels) used to compute
that output channel.
[0050] Additional example description of the processor

system, which may use one or more matrix processors, 1S
included m U.S. Pat. No. 11,157,287, U.S. Pat. No.

11,409,692, and U.S. Pat. No. 11,157,441, which are hereby
incorporated by reference 1n their entirety and form part of
this disclosure as 1f set forth herein.

[0051] FIG. 1B 1s a block diagram illustrating the example
processor system 120 determining static mformation 124
based on recerved image mformation 122 from the example
1mage sensors described above.

[0052] The 1mage information 122 includes 1mages from
1mage sensors positioned about a vehicle (e.g., vehicle 100).
In the illustrated example of FIG. 1A, there are 8 1mage
sensors and thus 8 1mages are represented in FIG. 1B. For
example, a top row of the image mformation 122 includes
three 1mages from the forward-facing mmage sensors. As
described above, the image mformation 122 may be
received at a particular frequency such that the illustrated
1mages represent a particular time stamp of images. In
some embodiments, the image information 122 may repre-
sent high dynamic range (HDR) immages. For example, dii-
ferent exposures may be combined to form the HDR 1mages.
As another example, the images from the 1mage sensors may
be pre-processed to convert them mto HDR 1mages (e.g.,
using a machine learning model).

[0053] In some embodiments, each mmage sensor may
obtain multiple exposures each with a different shutter
speed or mtegration time. For example, the different integra-
tion times may be greater than a threshold time difference
apart. In this example, there may be three integration times
which are, 1n some embodiments, about an order of magni-
tude apart 1n time. The processor system 120, or a different
processor, may select one of the exposures based on mea-
sures of clipping associated with 1mages. In some embodi-
ments, the processor system 120, or a different processor
may form an 1mage based on a combination of the multiple
exposures. For example, each pixel of the formed 1mage
may be selected from one of the multiple exposures based
on the pixel not including values (e.g., red, green, blue)
values which are clipped (e.g., exceed a threshold pixel
value).

[0054] The processor system 120 may execute a vision-
based machine learning model engine 126 to process the
image mformation 122. An example of the vision-based
machine learning model 1s described 1n more detail below,
with respect to FIG. 2-3B. As described herein, the vision-
based machine learning model may combine imformation
included 1n the images. For example, each image may be
provided to a particular backbone network. In some embo-
diments, the backbone networks may represent convolu-
tional neural networks. Outputs of these backbone networks
may then, in some embodiments, be combined (e.g., formed
into a tensor) or may be provided as separate tensors to one
or more further portions of the model. In some embodi-
ments, an attention network (e.g., cross-attention) may
recerve the combination or may receive input tensors asso-
ciated with each image sensor.

[0055] The combined output, as will be described, may
then be used to determine disparate static output imnformation
124 associated with a real-world environment. Example out-
put information 124 may be provided as a birds-eye view of
the real-world environment and include, for example, infor-
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mation related to one or more of edges, lines, dividers,
1slands, intersections, drivable space, restricted regions,
road blockages, trathic flow (e.g., directions of travel for
cach lane proximate to an autonomous vehicle), crosswalks,
visibility, and so on. In some embodiments, the output infor-
mation may form respective images which embody or other-
wise encode at least a portion of the above-described output
information. For example, an image depicting 1slands (e.g.,
illustrated in FIG. 4C) may be formed by the engine 126. In
this example, pixels may be assigned colors depending on a
probability or likelihood value of the pixel being associated
with an 1sland.

[0056] Additionally, and as will be described, the vision-
based machine learming model engine 126 may aggregate
information which 1s spread across time and/or space. For
example, a video module may be used to aggregate informa-
tion which 1s determined as the autonomous vehicle navi-
gates 1 a real-world environment. In this example, the
information may be aggregated over a prior amount of dri-
vable space. As an example, static information may be
expected to remain substantially similar (e.g., a road line 18
not expected to suddenly change). Thus, a specific road line
feature (e.g., a specific portion of a road line n the real-
world environment) may be spatially mdexed such that 1t
1s maintamed via the video module until the autonomous
vehicle 1s greater than a threshold distance away from the
road line feature (e.g., 50 meters, 80 meters, 100 meters,
150 meters, and so on). In this say, static information (e.g.,
static objects) may be tracked such that the processor system
120 monitors their location even when temporarily occluded
or 1f substantial time has passed (¢.g., the autonomous vehi-
cle 1s sitting 1n traffic, at a stop-light, and so on).

[0057] FIG. 2 1s a block diagram of an example vision-
based machine learning model which includes a birds-eye
view network 210. The example model may be executed
by an autonomous vehicle, such as vehicle 100. Thus,
actions of the model may be understood to be performed
by a processor system (e.g., system 120) included 1n the
vehicle. Example output 212 15 included m FIG. 2, and as
may be appreciated, the output may be indicative of types of
output from the network 210. Example graphical represen-

tations of the output 212 1s mcluded 1n FIGS. 4A-40.
[0058] In the illustrated example, images 202A-202H are

recerved by the vision-based machine learning model. These
images 202A-202H may be obtained from mmage sensors
positioned about the vehicle, such as 1mage sensors 102A-
102F. The vision-based machine learning model includes
backbone networks 200 which receive respective images
as mput. Thus, the backbone networks 200 process the raw
pixels included 1 the 1mages 202A-202H. In some embodi-
ments, the backbone networks 200 may be convolutional
neural networks. For example, there may be 5, 10, 15, and
so on, convolutional layers i each backbone network. In
some embodiments, the backbone networks 200 may
include residual blocks, recurrent neural network-regulated
residual networks, and so on. Additionally, the backbone
networks 200 may include weighted bi-directional feature
pyramid networks (BiFPN). Output of the BiFPNs may
represent multi-scale features determmned based on the
images 202A-202H. In some embodiments, Gaussian blur
may be¢ applied to portions of the images at traiming and/or
inference time. For example, road edges may be peaky 1n
that they are sharply defined mm 1mages. In this example, a
Gaussian blur may be applied to the road edges to allow for
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bleeding of visual mmformation such that they may be detect-

able by a convolutional neural network.
[0059] Additionally, certain of the backbone networks 200

may pre-process the mmages such as performing rectifica-
tion, cropping, and so on. With respect to cropping, images
202C from the fisheye forward-facing lens may be vertically
cropping to remove certain elements imncluded on a wind-
shield (e.g., a glare shield).

[0060] With respect to rectification, the vehicles described
herem may be examples of vehicles which are available to
millions, or more, end-users. Due to tolerances 1n manufac-
turing and/or differences 1n use of the vehicles, the image
sensors 1 the vehicles may be angled, or otherwise posi-
tioned, shightly differently (e.g., differences 1n roll, pitch,
and/or yaw). Additionally, different models of vehicles
may e¢xecute the same vision-based machine learning
model. These different models may have the 1mage sensors
positioned and/or angled ditterently. The wvision-based
machine learning model described herein may be tramned,
at least 1n part, using mformation aggregated from the veha-
cle fleet used by end-users. Thus, differences mm point of
view of the 1mages may be evident due to the slight distinc-
tions between the angles, or positions, of the 1mage sensors
in the vehicles mcluded 1n the vehicle fleet.

[0061] Thus, rectification may be performed via the back-
bone networks 200 to address these ditferences. For exam-
ple, a transformation (¢.g., an affine transformation) may be
applied to the images 202A-202H, or a portion thereof, to
normalize the mmages. In this example, the transformation
may be based on camera parameters associated with the
image sensors (e€.g., mage sensors 102A-102F), such as
extrinsic and/or intrinsic parameters. In some embodiments,
the 1mmage sensors may undergo an iitial, and optionally
repeated, calibrated step. For example, as a vehicle drives
the cameras may be calibrated to ascertain camera para-
meters which may be used mn the rectification process. In
this example, specific markings (e.g., road lines) may be
used to inform the calibration. The rectification may option-
ally represent one or more layers of the backbone networks
200, in which values for the transformation are learned

based on training data.
[0062] The backbone networks 200 may thus output fea-

ture maps (e.g., tensors) which are used by birds-eye view
network 210. In some embodiments, the output from the
backbone networks 200 may be combined mnto a matrix or
tensor. In some embodiments, the output may be provided as
a multitude of tensors (e.g., 8 tensors 1 the 1llustrated exam-
ple) to the birds-eye view net. In the 1llustrated example, the
output 1s reterred to as vision mformation 204 which 1s mput
into the network 210. While the backbone networks 200 and
birds-eye view network 210 are illustrated separately, n
some embodiments they may form part of the same network
or model (e.g., the vision-based model described herein).
Additionally, 1n some embodiments the backbone networks
200 and birds-eye view network 210 may be end-to-end

trained.
[0063] 'The output tensors from the backbone networks

200 may be combined (e.g., fused) together mto a virtual
camera space (e.g., a vector space) via the birds-eye view
network 210. The image sensors positioned about the auton-
omous vehicle may be at ditferent heights of the vehicle. For
example, the left and rear pillar image sensors may be posi-
tioned higher than the left and rear front bumper 1mage sen-
sors. Thus, to allow for a consistent view of objects posi-
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tioned about the vehicle, the virtual camera space may be
used. In the example described herein, the virtual camera
space 18 a birds-eye view (e.g., top-down view) of static
objects positioned about the autonomous vehicle. In some
embodiments, the birds-eye view may extend laterally by
about 70 meters, 80 meters, 100 meters, and so on. In
some embodiments, the birds-eye view may extend longi-
tudinally by about 80 meters, 100 meters, 120 meters,
150 meters, and so on. For example, the birds-eye view
may 1nclude static objects which are positioned 1 a real-
world environment 1n the lateral and/or longitudinal
distance.

[0064] For certain mnformation determined by the vision-
based machine learnming model, the autonomous vehicle’s
Kinematic mnformation 206 may be used. Example kinematic
information 206 may include the autonomous vehicles velo-
city, acceleration, yaw rate, and so on. In some embodi-
ments, the images 202A-202H may be associated with kine-
matic information 206 determined for a time, or similar
time, at which the 1mages 202A-202H were obtamed. For
example, the kinematic mformation 206, such as velocity,
yaw rate, acceleration, may be encoded (¢.g., embedded

into latent space), and associated with the images.
[0065] Example static output information 212 from the

birds-eye view network 210 1s indicated in FIG. 2. The out-
put information 212 may represent information associated
with static objects 1n the real-world environment about the
autonomous vehicle. For example, the output mformation
212 may include information associated with edges (e.g.,
road edge, such as sidewalk edge, curb edge, and so on).
In this example, the mformation may indicate positions of
the edges 1n the birds-eye view (e.g., positions with respect
to the output vector space) of the edges. In some embodi-
ments, the mmformation 212 may be reflected mn an mmage
which 1s formed based on the output from the network
210. For example, a pixel of an image may be assigned a
color based on a likelithood, or value 1ndicative of a prob-
ability, of the pixel bemng an edge. In this example, the color
may be a grayscale color selected based on the likelihood or
value.

[0066] Additional output 212 may mclude positions or
locations associated with lines, dividers, 1slands, intersec-
tions, drivable space, restricted regions, road blockage,
crosswalks, and so on. Furthermore, the output 212 may
indicate traffic flow mformation. For example, and as 1llu-
strated 1n FIG. 4J, the output 212 may indicate directions of
tratfic flow for road lanes proximate to the autonomous
vehicle. In some embodiments, the output 212 may assign
a color, or variations of a color, depending on the direction
of tratfic. Thus, tratfic flowing east may be assigned a color
different trom tratfic lowing west or south. The output 212
may additionally indicate visibility mformation, indicating
portions of the real-world environment which are not visible
to the vehicle (e.g., due to occlusions, weather, and so on).

[0067] As will be described, the output 212 may be gen-
crated via a forward pass through the birds-eye view net-
work 210. In some embodiments, forward passes may be
computed at a particular frequency (e.g., 24 Hz, 30 Hz,
and so on). In some embodiments, the output may represent
50, 100, 150, ditferent outputs which indicate different static
information associated with the real-world environment.
This mformation may be used, for example, via a planning
engine. As an example, the planning engine may determine
driving actions to be performed by the autonomous vehicle
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(¢.g., accelerations, turns, braking, and so on) based on the
birds-eye view of the real-world environment.

[0068] In some embodiments, map information may be
provided as an input to the birds-eye view network 210.
For example, a raster or image of a map proximate to a loca-
tion of the autonomous vehicle may be provided as an mput.
The birds-eye view network 210 may be tramned to use this
information to genecrate at least a portion of the outputs
described herein. For example, the map information may
include a representation of roads, lanes included 1n the
roads, medians, 1slands, bike lanes, crosswalks, itersec-
tions, and so on, which are proximate to the vehicle. In
this example, the birds-eye view network 210 may use the
map mformation, for example, to determine which lanes
connect to which other lanes (e.g., across an intersection).
[0069] Further detail regarding the birds-eye view net-
work 210 1s included below with respect to FIGS. 3A-3B.
[0070] FIG. 3A 1s a block diagram illustrating detail of the
example birds-eye view network 210. In the illustrated
embodiment, vision mformation 204 1s recerved by the
birds-eye view network 210. The vision information 204,
as described above, may represent output from the backbone
networks 200. Example output may include features (e.g.,
multi-scale features, feature maps, and so on) determined
based on received images.

[0071] A transformer network engine 402 receives the
vision mformation 204 as imput. In some embodiments, the
transformer network engime 402 1s tramned to project the
information 204 into a virtual camera space. For example,
the transformer network engine 402 may perform multi-
camera fusion and project mformation mto a birds-eye
view camera space. For example, during training the engine
402 may be trained to associate objects detected mn 1mmages
as being positioned within the virtual camera space. In this
example, the traming data may indicate positions of objects
as projected mto the view desired (¢.g., the birds-eye view).
Thus, during traming the loss function may cause updating
of weights of the model such that the projection mto the
birds-eye view vector space 1s effectuated.

[0072] Output from the transtformer network engine 302 1s
provided as mput to the feature queue engine 304. To ensure
that objects can be tracked as an autonomous vehicle navi-
oates, even while temporarily occluded, the feature queue
engine 304 can store output from the engine 302. For exam-
ple, the output may be pushed into the queue 304 according
to time and/or space. In this example, the time indexing may
indicate that the queue 304 stores output from the engine
302 based on passage of time (e.g., mnformation 1s pushed
at a particular frequency). Spatial indexing may indicate that
the queue 304 stores output from the engine 302 based on
spatial movement of the vehicle. For example, as the vehicle
moves 1 a direction the queue 304 may be updated after a
threshold amount of movement (e.g., .2 meters, 1 meter,
3 meters, and so on). Optionally, the threshold amount of
movement may be based on a location or speed of the vehi-
cle. For example, navigation on city streets may allow for
pushing information to the queue 304 after less movement
than navigation on a freeway (e.g., at higher speed). In some
embodiments, the queue 304 may store mformation deter-
mined based on 1mages taken at 10 \-time stamps, 12 \-
time stamps, 20 \-time stamps, and so on.

[0073] Output from the feature queue engine 304 may be
combined to form a tensor which 1s then processed by the
remainder of the birds-eye view network 210. For example,
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the output 306A-N (e.g., spatially indexed features) may be
provided to a video module 308. The video module 308 may
represent a convolutional neural network, which may cause
the processor system 120 to perform three-dimensional con-
volutions. In this way, the video module 308 may allow for
tracking of objects over space (e.g., as the vehicle moves).
In some embodiments, the video module may represent an
attention network (e.g., spatial attention), a recurrent neural
network, and so on.

[0074] With respect to video module 308, kinematic imfor-
mation 206 associated with the autonomous vehicle execut-
ing the vision-based machine learning model may optionally
be 1mnput into the module 308. As described above, the kine-
matic mformation 206 may represent one or more of accel-
eration, velocity, yaw rate, turning information, braking
information, and so on. The kinematic information 206
may additionally be associated with features 306 A-N from
the feature queue engine 304. Thus, the video module 308
may encode this kinematic information 206 for use 1n deter-
mining, as an example, positions of static objects.

[0075] For example, a particular road edge may be 1denti-
fied based on 1mages processed by the birds-eye view net-
work 210. In this example, the vehicle may move a particu-
lar amount with respect 1n three-dimensions which 1s
determinable based on the kinematic mmformation. Thus,
the position of the particular road edge may be adjusted 1n
current 1mages obtaimned by the vehicle. The birds-eye view
network 210 may therefore adjust the position of the parti-
cular road edge, for example even 1t occluded 1n the current
images, based on the kinematic information 206.

[0076] Thus, the video module 308 may perform frame
alignment. As described heremn, frames may represent
1mages (e.g., image frames) taken at a same time or substan-
tially same time by the image sensors. Thus, the video mod-
ule 308 may align frames taken at different times (€.g., the
feature maps resulting from the frames). For example,
frames may be selected according to their spatial index,
and may be optionally aligned to correct for the autonomous
vehicle’s movement. For example, if the vehicle moved
20 meters ahead, then the video module 308 may select, or
aggregate mformation which includes, frame(s) 20 meters
carlier (e.g., mn the past). In this example, the features of
those earlier frame(s) may be spatially shifted to align with
the current features which are 20 m ahead. This can be done
longitudinally and laterally at the same time, to ensure views
are consistent/aligned.

[0077] The birds-eye view network 210 includes one or
more trunks 314A-314N which obtain information from
the video module 308. For example, each trunk may obtain
a portion, or all, of the output from the video module 308. In
this example, each trunk may be tramed to generate specific
types of output. In some embodiments, the trunks may relate
to edges, lines, dividers, 1slands, itersections, drivable
space, restricted regions, road blockage, traffic low, cross-
walks, visibility, and so on. The trunks 314A-314N may be
assoclated with one or more heads 316A-316N, 318A-
318N, which output specific mformation for use by the
autonomous vehicle. Example output from the heads
316A-316N, 318A-318N 1s 1llustrated 1n FIGS. 4A-40.
[0078] As known by those skilled i the art, these trunks
or heads (collectively referred to heremn as heads) may
extend from a common portion of a neural network and be
trained as experts m determining specific mformation. In
addition to being experts 1n specific information, the separa-
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tion into ditferent heads allows for piecemeal training to
quickly icorporate new training data. As new tramning
information 1s obtained, portions of the machine learning
model which would most benefit from the traimning mforma-
tion may be quickly updated. In this example, the traning
information may represent images or video clips of specific
real-world scenarios gathered by vehicles 1n real-world
operation. Thus, a particular head or heads may be tramed,
and the weights mcluded 1n these portions of the network
may be updated. For example, other portions (e.g., earlier
portions of the network) may not have weights updated to
reduce a training time and time to updating end-user auton-
omous vehicles.

[0079] Insome embodiments, training data which 1s direc-
ted to one or more of the heads or trunks may be adjusted to
focus on those heads or trunks. For example, images may be
masked (e.g., loss masked) such that only certain pixels of
the 1mages are supervised while otherwise are not super-
vised. In this example, certamn pixels may be assigned a
value of zero while other pixels may maintain their values
or be assigned a value of one. Thus, if traming images depict
a rarely seen static object (e.g., a relatively new form of bike
lane) then the traiming 1mages may optionally be masked to
focus on that static object. During training, the error gener-
ated may be used to train for the loss 1n the pixels which a
labeler has associated with the static object. Thus, only a
head or trunk associated with this type of static object may
be updated.

[0080] To ensure that sufficient training data 1s obtained,
the autonomous vehicles may optionally execute classifiers
which are triggered to obtain images which satisty certain
conditions. For example, vehicles operated by end-users
may automatically obtain traming images which depict, for
example, tire spray, ramy conditions, snow, fog, fire soke,
and so on. Further description related to use of classifiers 1s
described i U.S. Pat. Pub. No. 2021/0271259 which 1s
hereby mcorporated herein by reference m its entirety as if
set forth herein.

[0081] While the output described above, and i FIGS.

4A-40, may represent 1mages, or mformation which may
be included m 1mages (e.g., pixel values), 1n some embodi-
ments additional mformation may be generated as output
from the network 210. For example, road edges may be
represented 1n an output image as values of specific pixels.
In this example, a likelihood (e.g., a value between 0 and 1)
ol a pixel forming part of a road edge may be converted to
grayscale. As may be appreciated, each pixel of the 1mage
may correspond to a portion of the real-world environment.
For example, each pixel may correspond to an area of a
threshold number of centimeters by a second threshold num-
ber of centimeters (e.g., 30 cm X 30 ¢cm, 10 cm x 30 ¢m,
35e¢m x 15 em, 33 cm x 33 ¢m, and so on).

[0082] To reduce this coarseness, i some embodiments
the network 210 may be trained to output an offset for
cach pixel. The ofiset may indicate how far from the center
of a pixel the road edge 1s. The offset may additionally indi-
cate a direction predicted which 1s associated with the offset.
In this way, the finer detail may represent metrics or mfor-
mation which associated with the pixels of the output image.
This information may be used to mform, at least, parking of
the vehicle (e.g., the road edge may be curved such that finer
accuracy 1s immportant). Additionally, the mformation may
be used to determine how far from a road edge the vehicle
1s to ensure that maneuvers or driving actions are maintained
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to be smooth via use of enhanced clearance from the road
edge.

[0083] Additional output may include connectivity mifor-
mation which 1s usable to indicate which lanes connect to
which other lines (e.g., across an intersection). For example,
a vehicle may be 1n the left-most lane 1n the vehicle’s direc-
tion of travel (e.g., the right side of the road). In this exam-
ple, the vehicle may be turning left across an tersection.
Thus, the birds-eye view network 210 may determine which
lanes across the mtersection which connect to the vehicle’s
current lane. This connectivity may be generated as an
image, for example the 1mage of FIGS. 4M-40.

[0084] In some embodiments, however, the connectivity
may additionally be represented as splines which connect
lanes. For example, the birds-eye view network 230 may,
at times, drop parts of the connectivity due to occlusion or
other reasons. Thus, 1n some embodiments, the network 230
(e.g., a specific head) may connect lines with splines. In this
way, 1f a portion of the connectivity represented 1in an 1mage
drops then a spline connecting the vehicle’s current line to
another lane across an intersection may be relied upon (e.g.,
in combination with the image or alone).

[0085] FIG. 3B 1s a block diagram illustrating an example
birds-eye view associated with a virtual camera. In the 1llu-
strated example, 1mage mformation 320 1s being processed
by the processor system 120 based on the birds-eye view
network 230. As described 1n FIG. 3A, the processor system
120 maps mformation included 1n the image mformation
320 into a virtual camera space. For example, a birds-cye
view 322 1s mcluded m FIG. 3B. Output 324 from the
birds-eye view network 230 may be used by a planning /
control engine 330 to navigate (e.g., autonomously navi-
pate) the autonomous vehicle.

Block Diagram - Example Output

[0086] FIGS. 4A-40 represent example output from the
birds-eye view network described herein. As described
above, the output may be generated by different heads of
the network. The output may optionally be mmages 1
which pixels are used to mndicate information. For example,
the pixels may be assigned colors, or gradations of colors
(e.g., to mdicate likelihoods), to indicate information. FIG.
4A-4) may thus depict examples of static objects which are
detectable by the birds-eye view network.

[0087] FIG. 4A 1llustrates an example output associated
with the birds-eye view network. In the 1llustrated embodi-
ment, image information 420 may be processed by the birds-
cye view network 230 (e.g., by a processor system comput-
ing a forward pass through the network 230) to generate
output 1image mnformation 404. In FIG. 4A, the output 404
represents predicted external edges. For example, a vehicle
402 which 1ncludes the processor system 120 1s depicted 1n
the output 404. Proximate to the vehicle 402 are external
road edges which are determined based on the 1mage mnfor-
mation 420 and projected mnto the birds-cye view vector
space.

[0088] FIG. 4B 1illustrates another example output asso-
ciated with the birds-eye view network 230. In FIG. 4B,
predicted dividers are represented 1 an output 1mage 406
from the birds-eye view network 230. These dividers are
evident 1 portions of the image mformation 420 (e.g., por-
tion 408). As described above, the dividers, and other output
information, may be determuned based on imformation
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which 1s aggregated as the vehicle drives such that tempor-
ary occlusions do not impact the inclusion in the output
image 406.

[0089] FIG. 4C illustrates another example output asso-
ciated with the birds-eye view network 230. In FIG. 4C,
predicted 1slands are represented 1n an output image 410.
An example divider 1s illustrated m the output image 410
and corresponds with a portion 412 of the 1mage informa-
tion 420.

[0090] FIG. 4D illustrates another example output asso-
ciated with the birds-eye view network 230. In FIG. 4D,
predicted lines are included 1n an output image 414. These
predicted lines may represent, for example, road edges, road
lines, bike lanes, and so on.

[0091] FIG. 4E illustrates another example output asso-
ciated with the birds-eye view network 230. In FIG. 4E,
superpixel mformation 1s used to generate an output 1mage
416. As described above, 1n some embodiments the birds-
eye view network 230 may determine metrics indicating
respective extents to which lines or edges are offset from
pixels 1 an 1mage mcluded 1n the output mnformation (e.g.,
intra-pixel precision). In some embodiments, these metrics
may be associated with the image and used, for example, to
inform planning and/or navigation ot the autonomous vehi-
cle. In some embodiments, the mmformation may be used to
refine the 1mage.

[0092] FIG. 4F 1illustrates another example output asso-
ciated with the birds-eye view network 230. In FIG. 4F,
the birds-eye view network 230 has generated an 1mage
418 mdicative of predicted regions. For example, a first
region 422 may mdicate non-drivable space. As another
example, a second region 424 may indicate lane dividers.
As another example, a third region 426 may ndicate an
intersection. As another example, a fourth region 428 may
indicate an 1sland. As another example, a fifth region 430
may mdicate drivable space. These different regions may
be assigned different colors by the network 230.

[0093] FIG. 4G illustrates another example output asso-
ciated with the birds-eye view network 230. In FIG. 4G,
the birds-eye view network 230 has generated an 1mage
432 which mdicates crosswalk regions. In some embodi-
ments, colors may be assigned to the crosswalk region 434
to indicate what angle (e.g., a vector) that pedestrians are
expected to walk . Thus, a first color may indicate that
pedestrians are to walk between left and rnight while a second
color may 1ndicate that pedestrians are to walk between top
and bottom.

[0094] FIG. 4H illustrates another example output asso-
ciated with the birds-eye view network 230. In FIG. 4H,
the birds-eye view network 230 has generated an 1mage
436 which indicates predicted restricted space. Restricted
space may indicate, for example, portions which the auton-
omous vehicle 1s not able to drive . For example, bike
lanes, sidewalks, and so on, may be mcluded 1n the 1mage
436 optionally 1 distinct colors.

[0095] FIG. 41 illustrates another example output asso-
ciated with the birds-eye view network 230. In FIG. 41, the
birds-eye view network 230 has generated an image 438
which indicates predicted drivable space. Thus, the 1mage
438 may indicate road portions.

[0096] FIG. 4] illustrates another example output asso-
ciated with the birds-eye view network 230. In FIG. 4], the
birds-eye view network 230 has genecrated an 1mage 440
which mdicates predicted lane flow. The mmage 440 may
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indicate, for each pixel, which direction cars are moving
towards. For example, the image 440 may include different
colors indicating ditferent flow directions. As an example, a
first color may 1ndicate movement to the left, a second color
may indicate movement to the right, a third color may 1ndi-
cate movement up, a fourth color may indicate movement
down, and so on. The intersection may optionally not be
assigned a color as the lane flow 1s mvalid.

[0097] FIG. 4K illustrates another example output asso-
ciated with the birds-eye view network 230. In FIG. 4K,
the birds-eye view network 230 has generated an image
442 which indicates road line color and/or appearance.
With respect to color, the image 442 may indicate while
road lines, yellow road lines, and so on. With respect to
appearance, the image 442 may indicate dotted lines, double
lines, single lines, and so on.

[0098] FIG. 4L illustrates another example output asso-
ciated with the birds-eye view network 230. In FIG. 4L,
the birds-eye view network 230 has generated an image
444 which indicates line semantics. For example, lines asso-
ciated with an intersection, stop sign, yield sign, crosswalk
stop, railroad stop, keep clear, and so on, may be 1included 1n
the 1mage 444 optionally with different colors.

[0099] FIG. 4M 1llustrates another example output asso-
ciated with the birds-cye view network 230. In FIG. 4M,
the birds-eye view network 230 has generated an mmage
446 which may aggregate disparate mnformation associated
with lines. For example, bike lanes, medians, 1slands, mnter-
sections, lane connectivity mmformation, and so on, may be
included 1n the 1mage 446 optionally with different colors.
[0100] FIG. 4N 1llustrates another example output asso-
ciated with the birds-eye view network 230. In FIG. 4N,
the birds-eye view network 230 has generated an 1mage
448 which 1dentifies potential connections between a current
lane of the autonomous vehicle and one or more lanes across
an ntersection. For example, a particular color may mdicate
the connections (e.g., connection 450).

[0101] FIG. 40 1illustrates another example output asso-
ciated with the birds-eye view network 230. In FIG. 40,
the birds-eye view network 230 has generated an 1mage
452 which 1dentifies connections between a current road of
the autonomous vehicle and proximate roads. For example,
the connections include connections 452-4354 to the road 1n
the upper left part of the image 452. The connections also
include connections 456-458 1n the lower right part of the
1mage 4352.

Example Flowchart

[0102] FIG. S 1s a flowchart of an example process 500 for
determining static mformation positioned about an autono-
mous or semi-autonomous vehicle using a vision-based
machine learning model. For convenience, the process 500
will be described as being performed by a system of one or
more processors (€.¢g., the processor system 120, which may
be included 1 a vehacle).

[0103] At block 502, the system obtains 1images from mul-
titude of 1mage sensors positioned about a vehicle. As
described above, there may be 7, 8, 10, and so on, image
sensors used to obtain images. At block 504, the system
computes a forward pass-through backbone networks. The
backbone networks may represent convolutional neural net-
works which optionally pre-process the 1mages (e.g., rectify
the 1mages, crop the images, and so on).
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[0104] At block 506, the system projects features deter-
mined from the 1mages mnto a birds-eye view. For example,
a transformer network included 1n a birds-eye view model
may project the features into a consistent vector space. In
this example, the transformer network may be tramned to
associate features extracted from the 1mages mnto the birds-
cye view projection. Optionally, a forced projection step
may precede the transformer network to, at least 1n part,
cause the projection mto the birds-eye view.

[0105] At block 508, the system aggregates spatially
indexed features. As described above, a video module
included 1n the birds-eye view network may be used to
aggregate mformation which 1s determined within a thresh-
old distance from the vehicle’s location. For example, the
video module may obtaimn features from a spatially indexed
queue which were determined over the previous 50 meters,
75 meters, 100 meters, and so on.

[0106] At block 510, the system determines static output
information associated with a. real-world environment 1
which the vehicle 1s driving. For example, different trunks
and heads mncluded 1n the birds-eye view network may be
used to generate the output information.

[0107] In some embodiments, the information (¢.g., the
1mages described herein) determined by the birds-view net-
work may be presented 1n a display of the vehicle. For
example, the information may be used to mform autono-
mous dniving (e.g., used by a planning and/or navigation
engine) and optionally presented as a visualization for a dri-
ver or passenger to view. In some embodiments, the mntor-
mation may be used only as a visualization. For example,
the driver or passenger may toggle an autonomous mode
off. The visualization may also represent a rendering based
on the mformation. For example, three-dimensional gra-
phics of objects (e.g., lane lanes, bike lanes) may be ren-
dered based on positional mmformation determined by the
birds-eye view network.

Vehicle Block Diagram

[0108] FIG. 6 illustrates a block diagram of a vehicle 600
(¢.g., vehicle 100). The vehicle 600 may include one or
more ¢lectric motors 602 which cause movement of the
vehicle 600. The electric motors 602 may include, for exam-
ple, induction motors, permanent magnet motors, and so on.
Batteries 604 (¢.g., one or more battery packs each compris-
ing a multitude of batteries) may be used to power the elec-
tric motors 602 as 1s known by those skilled 1n the art.
[0109] The vehicle 600 further includes a propulsion sys-
tem 606 usable to set a gear (e.g., a propulsion direction) for
the vehicle. With respect to an electric vehicle, the propul-
sion system 606 may adjust operation of the electric motor
602 to change propulsion direction.

[0110] Additionally, the vehicle includes the processor
system 120 which processes data, such as images received
from 1mage sensors 102A-102F positioned about the vehicle
600. The processor system 120 may additionally output
information to, and receive mformation (e.g., user input)
from, a display 608 included 1n the vehicle 600. For exam-
ple, the display may present graphical depictions of static
objects positioned about the vehicle 600.

Other Embodiments

[0111] All of the processes described herein may be embo-
died 1n, and fully automated, via software code modules
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executed by a computing system that includes one or more
computers or processors. The code modules may be stored
in any type of non-transitory computer-readable medium or
other computer storage device. Some or all the methods may
be embodied 1 specialized computer hardware.

[0112] Many other variations than those described herein
will be apparent from this disclosure. For example, depend-
ing on the embodiment, certain acts, events, or functions of
any of the algorithms described herein can be performed 1n a
different sequence or can be added, merged, or left out alto-
oether (for example, not all described acts or events are
necessary for the practice of the algorithms). Moreover, 1n
certain embodiments, acts or events can be performed con-
currently, for example, through multi-threaded processing,
interrupt processing, or multiple processors or processor
cores or on other parallel architectures, rather than sequen-
tially. In addition, different tasks or processes can be per-
formed by different machines and/or computing systems
that can function together.

[0113] The various 1illustrative logical blocks, modules,
and engines described 1n connection with the embodiments
disclosed heremn can be mmplemented or performed by a
machine, such as a processing unit or processor, a digital
signal processor (DSP), an application specific integrated
circuit (ASIC), a field programmable gate array (FPGA) or
other programmable logic device, discrete gate or transistor
logic, discrete hardware components, or any combination
thereof designed to perform the tunctions described herein.
A processor can be a microprocessor, but in the alternative,
the processor can be a controller, microcontroller, or state
machine, combinations of the same, or the like. A processor
can 1nclude electrical circuitry configured to process com-
puter-executable 1nstructions. In another embodiment, a
processor mcludes an FPGA or other programmable device
that performs logic operations without processing computer-
executable mstructions. A processor can also be implemen-
ted as a combination of computing devices, for example, a
combination of a DSP and a microprocessor, a plurality of
MICTOPrOCESSOrs, ONe Or MOre MICropProcessors 1m conjunc-
tion with a DSP core, or any other such configuration.
Although described herem primarily with respect to digital
technology, a processor may also mclude primarily analog
components. For example, some or all of the signal proces-
sing algorithms described heremm may be implemented 1n
analog circuitry or mixed analog and digital circuitry. A
computing environment can mclude any type of computer
system, mncluding, but not limited to, a computer system
based on a microprocessor, a mainframe computer, a digital
signal processor, a portable computing device, a device con-
troller, or a computational engine within an appliance, to
name a few.

[0114] Conditional language such as, among others,
“can,” “could,” “might” or “may,” unless specifically stated
otherwise, are understood within the context as used 1n gen-
cral to convey that certain embodiments include, while other
embodiments do not include, certain features, elements and/
or steps. Thus, such conditional language 1s not generally
intended to imply that features, elements and/or steps are
In any way required for one or more embodiments or that
on¢ or more embodiments necessarilly mclude logic for
decidig, with or without user mput or prompting, whether
these features, elements and/or steps are mncluded or are to
be performed 1n any particular embodiment.
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[0115] Daisjunctive language such as the phrase “at least
one of X, Y, or Z,” unless specifically stated otherwise, 1s
understood with the context as used mm general to present
that an item, term, etc., may be either X, Y, or Z, or any
combination thercof (for example, X, Y, and/or 7). Thus,
such disjunctive language 1s not generally intended to, and
should not, imply that certain embodiments require at least
one of X, at least one of Y, or at least one of 7Z to each be
present.

[0116] Any process descriptions, elements or blocks 1n the
flow diagrams described herein and/or depicted 1n the
attached figures should be understood as potentially repre-
senting modules, segments, or portions of code which
include one or more executable 1nstructions for implement-
ing specific logical tunctions or elements 1n the process.
Alternate implementations are included within the scope of
the embodiments described herein in which elements or
functions may be deleted, executed out of order from that
shown, or discussed, mcluding substantially concurrently or
1n reverse order, depending on the functionality involved as
would be understood by those skilled m the art.

[0117] Unless otherwise explicitly stated, articles such as

L A b

a” or “an” should generally be interpreted to mclude one or
more described 1tems. Accordingly, phrases such as “a
device configured to” are mtended to mclude one or more
recited devices. Such one or more recited devices can also
be collectively configured to carry out the stated recitations.
For example, “a processor configured to carry out recitations
A, B and C” can include a first processor contigured to carry
out recitation A working 1n conjunction with a second pro-
cessor configured to carry out recitations B and C.

[0118] It should be emphasized that many variations and
modifications may be made to the above-described embodi-
ments, the elements of which are to be understood as being
among other acceptable examples. All such modifications
and variations are intended to be included heremn within

the scope of this disclosure.

What 1s claimed 1s:

1. A method implemented by a vehicle processor system,
the method comprising:

obtaining 1mages irom a multitude of 1mage sensors posi-
tioned about a vehicle;
determining features associated with the 1mages, wherein
the features are output based on a forward pass through a

machine learning model;
projecting, based on the machine learning model, the fea-
tures mmto a vector space associated with a birds-eye
VIEW;

aggregating, based on a video module, the projected tea-
tures with other projected features associated with prior
1mages; and

outputting, based on a plurality of heads of the machine

learning model, 1mages depicting static objects 1n the
birds-eye view.

2. Themethod of claim 1, wherein the birds-eye view repre-
sents a top-down view 1 which static objects are positioned
about a location of the vehicle.

3. The method of claim 1, wherein each mmage sensor 1S
assoclated with a backbone network, and wherein the back-
bone network represents a portion of the machine learning
model which determines a portion of the features which are
associated with an individual image sensor.
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4. The method of claim 3, wherein the features are projected
into the vector space based on an attention network, and
wherein the attention network receives an aggregated 1mnput
of the features from the backbone networks.

5. Themethod of claim 1, wherein the video module obtains
the projected features and other projected features from a fea-
ture queue, and wherein the feature queue spatially mdexes
information.

6. The method of claim 1, wherein the machine learning
model 1s a hydra network in which a plurality of trunks
rece1ves respective portions of output from the video module,
and wherein each head 1s associated with an individual trunk.

7. Themethod of claim 1, wherein a first image of the output
images includes pixels which are assigned values based on
likelihoods of the pixels depicting road edges.

8. The method of claim 1, wherein a second 1mage of the
output 1mages includes pixels which are assigned respective
colors, and wherein each color 1s indicative of a direction of
travel.

9. The method of claim 1, wherein a third image of the out-
put 1mages depicts connections between a lane 1 which the
vehicle 1s located with one or mother other lanes across an
mntersection.

10. The method of claim 9, wherein the machine learming
model determines splines which connect the lane with the
other lanes.

11. A system comprising one or more processors and non-
transitory computer storage media storing instructions that
when executed by the one or more processors, cause the pro-
cessors to perform operations, wherein the system1s included
1n an autonomous or semi-autonomous vehicle, and wherein
the operations comprise:

obtaining images from a multitude of 1mage sensors posi-

tioned about a vehicle;

determining features associated with the 1mages, wherein

the features are output based on a forward pass through a
machine learning model;
projecting, based on the machine learning model, the fea-
tures mto a vector space associated with a birds-eye
VIEW;

aggregating, based on a video module, the projected fea-
tures with other projected features associated with prior
1mages; and

outputting, based on a plurality ot heads of the machine

learming model, 1mages depicting static objects 1 the
birds-eye view.

12. The system of claim 11, wherein the birds-eye view
represents a top-down view 1n which static objects are posi-
tioned about a location of the vehicle.

13. The system of claim 11, wherein each 1mage sensor 18
assoclated with a backbone network, and wheren the back-
bone network represents a portion of the machine learming
model which determines a portion of the features which are
associated with an individual image sensor.

14. The system of claim 13, wherein the features are pro-
jected into the vector space based on an attention network, and
wherein the attention network recerves an aggregated input of
the features from the backbone networks.

15. The system of claim 11, wherem the video module
obtains the projected features and other projected features
from a feature queue, and wherein the feature queue spatially
indexes mformation.
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16. The system of claim 11, wherein a first image of the
output mmages ncludes pixels which are assigned values
based on likelihoods of the pixels depicting road edges.

17. The system of claim 11, wherein a second 1mage of the
output images includes pixels which are assigned respective

colors, and wherein each color 1s indicative of a direction of

travel.

18. The system of claim 11, wherein a third image of the
output images depicts connections between a lane 1n which
the vehicle 1s located with one or mother other lanes across
an 1tersection.

19. The system of claim 18, wherein the machine learning
model determines splines which connect the lane with the
other lanes.

20. Non-transitory computer storage media storig nstruc-
tions that when executed by a system of one or more proces-
sors which are mcluded 1 an autonomous or semi-
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autonomous vehicle, cause the system to perform operations
comprising:
obtaining 1mages from a multitude of 1mage sensors posi-
tioned about a vehicle;
determining features associated with the 1mages, wherein
the features are output based on a forward pass through a
machine learning model;
projecting, based on the machine learning model, the fea-
tures 1to a vector space associated with a birds-eye
VIEW;
aggregating, based on a video module, the projected fea-
tures with other projected features associated with prior
1mages; and
outputting, based on a plurality of heads of the machine
learning model, 1mages depicting static objects 1 the
birds-eye view.
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