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(57) ABSTRACT

Adaptive navigation techniques are disclosed that allow
navigation systems to learn from a user’s personal driving
history. As a user drives, models are developed and main-
tamned to learn or otherwise capture the drniver’s personal
driving habits and preferences. Example models include
road speed, hazard, favored route, and disfavored route
models. Other attributes can be used as well, whether based
on the user’s personal driving data or driving data aggre-
gated from a number of users. The models can be learned
under explicit conditions (e.g., time of day/week, driver ID)
and/or under implicit conditions (e.g., weather, drivers
urgency, as inferred from sensor data). Thus, models for a
plurality of attributes can be learned, as well as one or more
models for each attribute under a plurality of conditions.
Attributes can be weighted according to user preference. The
attribute weights and/or models can be used 1n selecting a
best route for user.
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ADAPTIVE AND PERSONALIZED
NAVIGATION SYSTEM

RELATED APPLICATIONS

[0001] This application 1s a divisional of U.S. patent
application Ser. No. 12/414,461, filed on Mar. 30, 2009, and
titled “Adaptive and Personalized Navigation System,”
which 1s a continuation of U.S. patent application Ser. No.
11/556,120, filed on Nov. 2, 2006, and titled “Adaptive and
Personalized Navigation System,” now U.S. Pat. No. 7,512,
487, which 1s related to U.S. application Ser. No. 11/556,
128, filed Nov. 2, 2006, and titled “Generating Attribute
Models for Use 1n Adaptive Navigation Systems,” now U.S.
Pat. No. 7,680,749, all of which are herein incorporated 1n
their entirety by reference.

FIELD

[0002] The invention relates to navigation systems, and
more particularly, to an adaptive navigation system that
learns from a user’s driving history.

BACKGROUND

[0003] Vehicle navigation systems typically use position
data from a global positioning system (GPS) system to
determine a vehicle’s location. Such systems also may
include additional sensors such as an odometer or gyroscope
to provide dead-reckoning navigation when GPS signals are
lacking. In operation, the driver inputs a destination address
into the vehicle’s navigation system. The navigation system
will then calculate the position of the vehicle and the route
to be traveled, and guide the driver to that destination, using,
audible and visual instructions. The directions are derived
from map data accessible to the system (e.g., stored on hard
drive or CD ROM). Some systems integrate traflic informa-
tion 1nto the directions provided, thereby allowing the user
to select less congested routes.

[0004] Such navigation systems, while helpiul, are asso-
ciated with a number of problems. One such problem 1s that
many conventional navigation systems are not adaptive, and
continue to make the same mistakes or otherwise provide
undesirable directions repeatedly. For example, assume that
a road called El Camino Real 1s slow (e.g., many traflic
lights). A conventional navigation system, however, under-
stands this road to be fast because 1t 1s also a numbered state
route (CA Route 82), and therefore includes 1t in driving
directions whenever possible, despite the driver’s continued
frustration with use of that route.

[0005] Some more advanced navigation systems can
determine a driver’s average road speed for roads frequently
traversed, so that estimated travel times can be calculated.
Other navigation systems can learn frequently driven routes,
so that minimal instruction can be given for those routes
(thereby distracting the driver less). Although such naviga-
tion systems provide additional driver support, they are still
not sufliciently adaptive.

[0006] For instance, such systems fail to consider changes
over time (e.g., rush-hour vs. weekend) and under different
conditions (e.g., when road 1s under construction, different
weather conditions, driver 1s in a hurry, local stadium event
just ended, etc). In addition, conventional systems fail to
consider multiple route attributes simultaneously; nor do
they consider multiple conditions. Moreover, some such
systems aggregate information from all users (as opposed to
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an mndividual user). These aggregate-based systems typically
require a common inifrastructure to be built (a centralized
traflic database or server), and depend on getting a ““critical
mass’ of early adopters for successiul deployment. In addi-
tion, while such aggregated systems provide representative
coverage, they fail to consider the relevance of personal
driving history (e.g., the extent to which the individual
driver departs from the mean 1 terms of drniving style,
preferences, and road knowledge).

[0007] What 1s needed, therefore, are adaptive navigation
techniques.

SUMMARY
[0008] One embodiment of the present mvention 1s a

method for generating directions for use in navigation
during a current driving session. The method includes
receiving a route request from a user (the request including
a target destination), generating a set of candidate routes
(with each route including one or more segments), comput-
ing a score for each candidate route based on one or more
attribute models learned from previous user driving ses-
s1ons, and providing at least one scored route to the user. In
one particular case, at least one of the attribute models
provides a summary statistic of attribute values that have
been observed during driving sessions on a particular seg-
ment. The method may further include receiving current
time and user location data for use in time-sensitive route
generation. In another particular case, computing a score for
cach candidate route based on one or more attribute models
learned from previous user driving sessions includes access-
ing (for a target attribute of a candidate route) one or more
conditional variant models associated with the target attri-
bute, and probabailistically determining which of the one or
more conditional variant models to apply to the current
driving session. In one such case, probabilistically deter-
mining which of the one or more conditional variant models
to apply includes determining 1f a conditional variant cor-
responds to an explicit or implicit condition. In response to
the conditional variant corresponding to an explicit condi-
tion, the method may include assigning a probability of 1 to
a conditional variant model that corresponds to the explicit
condition, and assigning a probability of 0 to other condi-
tional variant models associated with the target attribute. In
response to the conditional variant corresponding to an
implicit condition, the method may include assigning a
probability to each conditional variant model associated
with the target attribute, using Bayesian reasoning and
observed data of the current driving session. The method
may further include recomputing probabilities periodically
during the current driving session, using subsequently
observed data of the current driving session. In another
particular case, computing a score for each candidate route
further includes computing a value of the target attribute
based on a conditional variant model having a highest
probability of being applicable to the current driving ses-
sion. In another particular case, computing a score for each
candidate route further includes predicting a value for the
target attribute using a combination of the conditional vari-
ant models for the attribute. The method may include
assigning an attribute weight to each target attribute of each
candidate route, based on attribute preferences of the user. In
one such case, computing a score for each candidate route
includes computing the score using target attribute values
computed using the one or more attribute models, and the
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attribute weights. The method may further include adjusting
the attribute weights based on subsequent user input. In one
particular case, the method includes sorting the candidate
routes based on their scores. Here, providing at least one
scored route to the user includes providing a plurality of high
scoring routes for user selection. The method may further
include receiving a selected route from the user, and deter-
mimng 1i the attribute weights need to be adjusted based on
that user selection. In response to the attribute weights
needing to be adjusted based on that user selection, the
method may further include adjusting the attribute weights
based on the user selection. The one or more attribute
models model, for example, different road attributes and/or
a common road attribute under different conditions. The
road attributes may 1nclude, for 1nstance, road speeds, road
safety, user-favored roads, and user-disfavored roads. The
different conditions may include, for example, inclement

weather, favorable weather, time of day, and time of week.

[0009] Another embodiment of the present invention pro-
vides one or more machine-readable mediums (e.g., one or
more compact disks, diskettes, servers, memory sticks, or
hard drives) encoded with instructions, that when executed
by one or more processors, cause the processor to carry out
a process lor generating directions for use in navigation
during a current driving session. This process can be, for
example, similar to or a variation of the previously described
method.

[0010] Another embodiment of the present invention pro-
vides a system for generating directions for use 1n navigation
during a current driving session. The system functionality
can be implemented with a number of means, such as
soltware (e.g., executable instructions encoded on one or
more computer-readable mediums), hardware (e.g., gate
level logic or one or more ASICs), firmware (e.g., one or
more microcontrollers with I/O capability and embedded
routines for carrying out the functionality described herein),
or some combination thereof.

[0011] The features and advantages described herein are
not all-inclusive and, 1n particular, many additional features
and advantages will be apparent to one of ordinary skill 1n
the art 1n view of the figures and description. Moreover, 1t
should be noted that the language used 1n the specification
has been principally selected for readability and instruc-
tional purposes, and not to limit the scope of the mventive
subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] FIG. 1 1s ablock diagram of an adaptive navigation
system configured in accordance with one embodiment of
the present imvention.

[0013] FIG. 2 1s a block diagram of an attribute model
learning module of the adaptive navigation system of FIG.
1, configured in accordance with one embodiment of the
present invention.

[0014] FIG. 3 illustrates a method for generating attribute
models for use 1n the adaptive navigation system of FIG. 1,
in accordance with one embodiment of the present inven-
tion.

[0015] FIGS. 4a and 45 illustrate a method for generating
driving directions based on attribute models, 1n accordance
with one embodiment of the present invention.
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DETAILED DESCRIPTION

[0016] Navigation techniques are disclosed that are adap-
tive to changes over time and changes under other condi-
tions, and personalized to an individual’s driving style,
preferences, and road knowledge. The techniques can
optionally be used in conjunction with data aggregated from
multiple users to provide benefits of both individual and
group based data, 1f so desired.

[0017] General Overview

[0018] As a user drives, modelers are employed to develop
and maintain attribute models, which etlectively capture the
driver’s personal driving habits and preferences. Example
models include road speed models, hazard models, favored
route models, and disfavored route models. Other attributes
associated with user’s dniving experiences can be modeled
as well, whether based on the user’s personal driving data or
driving data aggregated from a number of users. In one
particular embodiment, each of the modelers 1s configured to
learn not just one model for an attribute, but rather a plurality
ol alternate models, with each alternate corresponding to
conditions that impact the attribute 1n some way. In one such
configuration, these conditions can be defined 1n two ways:
predefined or “explicit” conditions and inferred or “implicit™
conditions.

[0019] Explicit Conditions: Consider, for example, a road
speed modeler that 1s configured to learn four separate
models: a morning rush-hour model (e.g., 6:30 am to 9:30
am, Monday through Friday), an evening rush-hour model
(e.g., 3:30 um to 6:30 pm, Monday through Friday), mid-day
weekday model (e.g., 9:30 am through 3:30 pm, or other
non-rush-hour weekday times), and a weekend model. When
the road speed modeler collects its observations of road
speed data, 1t files them into whichever one of the four
models currently applies (e.g., assuming the system has
access to day-of-week and time-of-day info). Likewise,
when the road speed modeler predicts travel times, 1t also
uses whichever of the four models currently applies. In this
example, the explicit conditions are the day-of-week and
time-of-day. Another example of explicit condition is the
particular driver of the car during any one driving session.
Here, there can be one attribute model (or set of attribute
models) for each driver of the car (assuming the system has
access to driver 1D info).

[0020] Implicit conditions: Practically speaking, and con-
tinuing with the road speed modeler example, there are
innumerable conditions that can affect road speed, such as
whether the driver 1s 1n a hurry, various weather conditions,
whether a sports or concert event has just ended, whether
there 1s an accident or road construction ahead, and so on.
The explicit conditions approach 1s infeasible for handling
all of these possible circumstances, both because 1t 1is
difficult to anticipate all of them, and because it 1s difficult
to supply the system with the information needed to deduce
which condition applies (e.g., as done with day-of-week and
time-of-day, or driver ID info). Thus, a clustering approach
can be employed. This approach starts with mimi-models of
the attribute of interest (such as road speed), each mini-
model corresponding to a single driving session (note that a
mini-model may include multiple reads within each ses-
sion). The mini-models are merged (“clustered”) together 11
they have similar data, as determined by using a similarity
metric. One algorithm for implementing this clustering 1s
hierarchical agglomerative clustering (HAC). The algorithm
produces a set of conditional variants of an attribute model,
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cach corresponding to some condition that aflects driving
(e.g., whether the driver 1s in a hurry, whether 1t’s raining/
snowing, whether 1t’s a holiday, whether there’s a slowdown
due to an accident/construction ahead, and so on).

[0021] Once a set of conditional variants has been
inferred/derived or predefined, which one applies to any
given driving session can be determined. This process is
relatively straightforward with explicit conditions, because
explicit rules are predefined (e.g., this 1s the variant to be
used weekdays M-F, from 6:30 am to 9:30 am). But with
implicit conditions, there are no such rules. Thus, and 1n
accordance with one particular embodiment of the present
invention, probabilistic modeling with Bayesian updates can
be employed. As a new driving session 1s started, a prior
probability (or weight) 1s mitially assigned to each of the N
conditions. As driving proceeds, observations are collected
about driving speeds (or application of the brakes, or what-
ever other dnving events are relevant to the attribute model
at 1ssue). Each time an observation i1s collected, a determi-
nation 1s eflectively made as to how consistent i1s that
observation with each of the N conditions. A Bayesian
update of the probability (or weight) 1s performed on each of
the N conditions accordingly. Thus, at any moment 1n time,
there 1s a set of probabilities (or weights), one weight per
condition, that indicates how likely 1t 1s that a particular
condition in fact applies to the current driving session.
Recall that 1n the explicit conditions case, it 1s known with
certainty which condition applies (e.g., 11 it 1s Wednesday at
7:30 am, then the “rush hour” condition applies). In the
implicit conditions case, there 1s only a probability on each
condition (e.g., 0.8 for the “raimny weather” condition, and
0.2 for the “dry weather” condition). In this example case,
the rainy weather attribute model can be used (based on the
higher weight currently assigned to the “rainy weather”
condition relative to the weight currently assigned to the
“dry weather” condition). In addition, when predicting travel
time of a proposed route, the system can combine the travel
time predictions of the rainy-weather and dry-weather con-
ditional variants of the road speed model, using a weighted
average with probabilities 0.8 and 0.2. Note that this 1s a case
of using multiple conditional variants of an attribute model
to evaluate an attribute.

[0022] In addition to, or as an alternative, each candidate
route that could be used to guide the user to a target
destination can be scored for desirability based on a com-
bination of that route’s attributes (e.g., fastest and most
scenic route, or fastest non-highway route), where an appro-
priate weight 1s learned for each route attribute based on user
teedback. Learning the attribute weights can be achieved
using techniques for learning a ranking metric. For example,
if the top three route choices are presented to the user
according to current desirability scores, and the user chooses
route #2 or #3, then the attribute weights are adjusted to
tavor the selected route relative to the routes that precede 1t
in the mitial ordering. Attributes may include, for instance,
road speed, road familiarity, road safety, distavored roads,
scenic quality, road length, road type (e.g., highway vs. local
road), or any other attribute that could affect a user’s route
preference. Note that modeling 1s not needed for all of these
attributes (e.g., road length data can be pre-supplied; there-
fore, 1t 1s not necessary to learn models of 1t or conditional
variants of the model).

[0023] Models for several attributes (e.g., such as road
speed, road familiarity, road safety, and distavored roads)
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can be learned while contemporaneously learning condi-
tional variants of each attribute separately. For example,
conditional variants of a road-safety attribute model can be
learned, which may correspond to a “wet weather” road-
satety model, and a “dry weather” road-satety model. It will
be appreciated that such a conditional variants approach can
be applied to all attributes (1.e., not specific to just road
speeds).

[0024] Thus, one embodiment of the present invention
provides a navigation system configured for inferring con-
ditional variants of road attribute models and reasoning
probabilistically from them, and learning to use multiple
route attributes to compute an overall route desirability
score. In general, the system can be implemented, for
example, with an attribute model learner function, a route
finder function, and a desirability metric learner function,
along with other conventional navigation system functions.
The attribute model learner function 1s configured to learn an
attribute 1n the form of a set of conditional variants. This
function can be carried out ofl-line (e.g., 1n advance of
receiving a request for directions). The route finder function
1s configured to generate an ordered list of routes from point
A to point B and lets the user pick one. The desirability
metric learner function 1s configured to learn a set of weights
on the attributes, and defines an overall “desirability” metric
for routes. Each of the route finder function and the desir-
ability metric learner function can be carried out on-line
(e.g., 1n response to a request for directions). The ofl-line
functional component 1nvolves applying the attribute model
learner to one or more attributes used for choosing a route
(e.g., road speed, road satety, scenicness of route, distavored
roads). The on-line functional component involves finding a
route, and subsequently adjusting the desirability metric
based on which route the user selected from the list of routes
presented. Note that the off-line functional component can
(and should) be re-applied periodically, as the system accu-
mulates more driving sessions during normal operation.

[0025] System Architecture

[0026] FIG. 1 1s a block diagram of an adaptive navigation
system configured in accordance with one embodiment of
the present invention.

[0027] As can be seen, the system 1includes a GPS receiver
101, a dead-reckoming sensor 103, a location detector mod-
ule 105, an attribute model learming module 107, a map data
storage 109, a route generator module 111, an attribute
welghting module 113, a display/audio module 115, and a
user interface module 117. The system may also include one
or more other sensors (generally referred to as other sensors
102). The system can be used, for example, 1n a vehicle such
as a car, truck, taxi, bus, and other such moving vehicles.
Although such examples favor land-based navigation, the
same principles can be applied to water-based (e.g., vessels)
and air-based (e.g., airplanes) navigation, 1f so desired.

[0028] The GPS receiver 101 1s configured for receiving
GPS signals, and can be implemented with conventional
technology. As 1s known, GPS satellites broadcast precise
timing signals by radio frequency to the GPS receiver 101.
This allows GPS recerver 101 to accurately determine their
current location (longitude, latitude, and altitude). This
determination can be made in real-time, and 1n any weather
conditions. The GPS receiver 101 receives the GPS timing
signals, and outputs the current time and corresponding
location data (e.g., geometric coordinates X, y, z) of the
vehicle (or other guided entity). The time and location data
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1s then provided to each of the learning module 107 and the
location detector module 105.

[0029] The dead-reckoning sensor 103 1s configured for
detecting the vehicle’s relative location and direction of
movement, based on previous location data. This sensor 103
can be implemented with conventional technology. For
instance, the dead-reckoning sensor 103 may include a
sensor for measuring travel distance (e.g., speedometer,
accelerometer, odometer), and a sensor for measuring a
rotation angle (e.g., gyroscope, geomagnetic sensor). Thus,
the dead-reckoning sensor 103 senses the velocity and
direction of vehicle movement, and provides that data to

cach of the learning module 107 and the location detector
module 103.

[0030] Note that other sensors 102 may also be included to
provide data to the learning module 107 and/or the location
detector module 105. These other sensors may include, for
example, vehicle performance sensors (e.g., speedometer,
accelerometer, decelerometer, horn-use sensor, braking sen-
sor, turn-radius sensor based on steering wheel position,
etc), proximity sensors (e.g., IR transceivers for sensing
close tratlic and possibly dangerous roadways such as nar-
row underpasses or parking ramps), weather and atmo-
spheric sensors (e.g., thermometer, barometer, visibility/fog
sensors, snow/ice sensors, etc). Further note that such other
sensors 102 may be integral to the GPS receiver 101 and/or
dead-reckoning sensor 103, or may exist as independently
from recerver 101 sensor 103.

[0031] The map data storage 109 stores digital map data
that can be used to guide the user, and can be implemented
with conventional technology. As 1s typically done, a map of
the area covered by the navigation system i1s divided into
sections of a predetermined size. Map information (e.g.,
roads, intersections, etc) 1s displayed by the use of nodes and
links 1n each of the map sections. In other embodiments, data
storage 109 stores raw map data (e.g., Navteq and/or Teleat-
las data), and further includes an API that draws the corre-
sponding map for display, in real-time. Numerous known
map data storage and/or drawing techniques can be
employed. As will be apparent 1n light of this disclosure, the
storage 109 may also store other information used in the
attribute model learning and/or route generation processes.
Such other information may include, for example, attribute
estimate rules, attribute weights that specily the relative
importance of each attribute 1n determining overall route
desirability for the particular user, sensor data, user prefer-
ences, etc.

[0032] The location detector module 105 1s programmed
or otherwise configured to retrieve map data of the target
arca from storage 109, based on the vehicle’s location as
indicated by the GPS receiver 101 and the dead-reckoning
sensor 103, and to perform map-matching. As 1s known,
map-matching uses digital map data and GPS data to locate
a vehicle on the proper position relative to the digital map.
This map-matching process helps to compensate for error
associated with measurements made by the GPS receiver
101 and/or dead-reckoning sensor 103. Any number of
conventional map-matching algorithms can be employed by
the location detector module 105.

[0033] The attribute model learning module 107 1s pro-
grammed or otherwise configured to receive data from each
of the GPS receiver 101, dead-reckoning sensor 103, and
any other suitable sensors 102, as well as optional user input
and/or feedback, and to compute models of various attri-
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butes associated with the user’s driving experiences. In one
particular embodiment, the modeled attributes include road
speed, favored routes, distavored routes, and hazardous
routes. An attribute model 1s dernived from one or more
driving sessions, and in accordance with one particular
embodiment, includes a mapping from road segment to
attribute value and an estimate of the attribute value for
“unseen’ road segments (segments not yet actually traveled
on by the user). The mapping only covers road segments that
have been traversed at least once 1n the driving sessions from
which the model was derived, and gives a summary statistic
(such as mean or median or other suitable statistic) of the
attribute values that have been observed in other driving
sessions for that segment. The estimate of the attribute value
for unseen road segments can be a default value, such as
summary statistic (e.g., mean or median or other suitable
statistic) over all segments 1n the model, or only over
segments that are similar to the road segment for which the
system 1s trying to estimate a value (e.g., only over 4-lane
highways).

[0034] Example mput (or otherwise available data) to the
learning module 107 includes the name of the attribute for
which to learn models, a set of driving sessions, one or more
attribute estimation rules for estimating a value of the
desired attribute from sensor measurements (e.g., where the
value 1s either directly measured, or inferred from one or
more measurements), and a similarity metric for comparing,
two models of the attribute. Each of driving sessions
includes a set of measurements relevant to the desired
attribute (e.g., driving speeds to learn a road speed attribute
model). The measurements are taken along the route tra-
versed 1n that driving session by sensors such as GPS
receiver 101, dead-reckoning sensor 103, and other sensors,
such as vehicle performance sensors (e.g., braking, acceler-
ating, speed, etc), proximity sensors (€.g., closeness to other
vehicles and roadway objects, etc), and weather and atmo-
spheric sensors (e.g., temperature, rain, 1ce, snow, etc), as
previously explained. The attribute estimation rules (which
can be stored in storage 109, for example) may be identity
rules or more complex rules, depending on the particular
attribute. For example, for the attribute of road speed, an
identity rule applies, where the measurement 1s road speed
(e.g., as measured by a speedometer or other suitable
means), and the desired attribute i1s road speed. For road
safety, the attribute estimation rule or rules are more com-
plex and use, for instance, a scoring system to estimate road
safety from “observable” (via operation of sensors) events
such as skids, short stops, consistent braking, brake pumping
over longer distances, weather conditions, traflic conditions,
and slow driving. The similarity metric can be encoded 1n
the learning module 107 itself, and compares two models
based primarily on road segments for which they both have
mapped values, but if there 1s isutlicient overlap between
the two models, then the similarity metric may compare road
segments for which one or both models only has an estimate
of the attribute value. The similarity metric also has the
option of returning “unknown” as the similarity between two
models 1f they have insuflicient overlap.

[0035] Example output of the learning module 107 1s a set
of statistical models for each modeled attribute. Each model

1s a “conditional variant” that models the target attribute

under an explicit or implicit condition. An example explicit
condition 1s: active time of model 1s between 6:30 am and

9:30 am M-F (i.e., rush hour). An example implicit condition
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1s: the system 1s provided with a set of driving sessions of
road speed data, and the learning module 107 forms two
groups, one corresponding to driving in rainy conditions and
one corresponding to driving 1n dry conditions. As will be
apparent 1n light of this disclosure, the system does not
realize that the two conditional variants are correlated with
weather conditions; rather, the system merely notices that
the road speed patterns fall into two distinct groups.

[0036] Thus, the learming module 107 can learn an attri-
bute model, in the form a set of conditional variants of the
model. In addition, the learning module 107 develops and
refines the attribute models as the user drives, thereby
cllectively creating robust personal driving models for the
user. Further, note that each user of the vehicle can have his
or her own set of models. The attribute model learning
module 107 will be discussed in further detail with reference

to FIGS. 2 and 3.

[0037] The route generator module 111 1s programmed or
otherwise configured to receive or otherwise access attribute
models from the learning module 107 and location/timing
data from the location detector module 105, as well as a
target destination from the user interface 117, and to com-
pute one or more routes to that target destination. The
computed routes are then provided to the user via the
display/audio module 115. Each of the user interface 117 and
the display/audio module 115 can be implemented using
conventional data entry and output interfaces (e.g., key-
board, touchpad, and/or voice recognition for facilitating
input by user; and a display and/or verbal commands for
facilitating output by the system). In addition, the route
generator 111 can be configured to effectively combine the
various attribute models (e.g., road speed, road hazards, etc)
into an overall score that represents the quality or desirabil-
ity of a given route (based on the user’s personal driving
habits as reflected in the models). In this sense, the route
generator 111 generates a number of route choices for the
user, and then picks or suggests the best one of those routes
for that particular user.

[0038] Example mput to the route generator module 111
includes a target destination, a set of attribute models,
current driving session data, attribute estimation rules, and a
set of attribute weights. The set of attribute models 1s
generated by the learning module 107 (e.g., generated dur-
ing one or more ofl-line learning sessions). As previously
explained, each attribute may have a set of models for
conditional variants of that attribute (e.g., road speed model
for rush-hour and a road speed model for weekends). The
current driving session data 1s a set of measurements taken
during the driving session so far (up to the point where the
user 1s asking for directions). The measurements can be
taken by sensors such as GPS receiver 101, dead-reckoning,
sensor 103, and other sensors 102 previously discussed (e.g.,
performance sensors, proximity sensors, and atmospheric
sensors). Such driving session data can be used to help
determine which conditional variant of each applicable
attribute model to use. The attribute estimation rules are for
estimating a value for the desired attribute from the mea-
surements, and can be the same rules used by the learning
module 107. These rules are used by the route generator
module 111 to convert the sensor measurements in the
driving session so far into attribute values. The set of
attribute weights specily the relative importance of each
attribute 1n overall route desirability for the particular user.
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In this example embodiment, the set of weights 1s learned by
the attribute weighting module 113, as will be explained in
turn.

[0039] Example output of the route generator module 111
includes a list of candidate routes from point A (e.g., user’s
current position) to B (e.g., target destination input by user),
sorted by decreasing desirability. The route generator mod-
ule 111 may also output a route from A to B, selected by the
user from the candidate routes. Recall that the route ulti-
mately selected by the user may be different from the route

having the highest desirability score. The route generator
111 will be discussed in further detail with reference to
FIGS. 4a and 4b.

[0040] The attribute weighting module 113 1s programmed
or otherwise configured to learn a set of attribute weights
that provided to the route generator module 111 for com-
bining the different attributes into an overall metric for
estimating desirability of a route. Example input to the
attribute weighting module 113 includes a set of attribute
weights (one for each attribute used so far), a list of
candidate routes, and the route ultimately selected by the
user. Initially, the attribute weights are set to default values
that capture the relative importance of the different attributes
in the general population of drivers (e.g., high weight on
road speed, moderate weight on route simplicity, moderate
weight on route safety). These attribute weights can be
stored, for example, 1n the module 113 1tself or in storage
109 (or 1n some other suitable storage), and are refined as
attribute desirability learning occurs based on user mnput.
The list of candidate routes 1s sorted by decreasing desir-
ability score, as produced by the route generator module 111.
Example output of the attribute weighting module 113
includes a default set of attribute weights or a modified set
of attribute weights (based on actual route selections by
user) to use in the future.

[0041] In operation, once learning module 107 has learned
models of several different attributes (e.g., road speed,
preferences, road hazards, etc), they can be ellectively
combined 1nto an overall score of the desirability of a given
route, 1n accordance with one embodiment of the present
invention. This combining can be carried out, for example,
by the route generator module 111 or some other dedicated
route scoring module. In one particular embodiment, the
form for such a route score 1s a linear combination. In one
such case, the desirability score for route r 1s computed by
the route generator module 111 as follows: Score, =SUM w,
x.. Here, 1 represents a particular attribute and 1s a number
in the range of 1 to I, where I equals the total number of route
attributes; x, represents values of the attributes of route r
(c.g., the length of the route, the expected travel time of the
route, the hazard level of the route, user familiarity with the
route, user fondness/dislike of the route, average user speed
on the route, and so on); and w, represents the attribute
weights that are learned by module 113 based on user
input/action.

[0042] The problem of learning the attribute weights w,
from examples can be thought of as learning a ranking
metric. In one embodiment of the present invention, the
attribute weighting module 113 employs a gradient descent
technique. In more detail, the technique begins with setting
the attribute weights to default values. Each candidate route
(generated by the route generator module 111) 1s scored
using these 1nitial attribute weights 1n accordance with the
Score, formula. The top N highest-scoring routes can then be
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presented to the user (e.g., assume there are three high-
scoring routes: #1, #2, and #3). I the user selects route #1,
then there 1s nothing to learn. However, 11 the user selects,
for example, route #3, then a number of preferences can be
learned. For instance, 1n this particular example, 1t 1s now
known that the user prefers route #3 over both route #1 and
route #2.

[0043] With this learned information, the attribute weight-
ing module 113 can construct a new attribute vector d, by
taking the attribute vector for route #3 and subtracting the
attribute vector for route #1. If the desirability score 1s then
applied to vector d, 1t will give a negative score (because #1
outscores #3). The learning carried out by the attribute
weighting module 113 1s to adjust the weights w, so as to
reduce the negativity of this score. For each attribute x, that
1s larger for route #3 than for route #1, 1its weight w, 1s
increased 1n the Score, formula. For each attribute x, that 1s
smaller for route #3 than for route #1, its weight w, 1s
decreased in the Score, formula. In this way, the score
assigned by the Score, formula to route #3 1s increased
relative to the score assigned by the Score, formula to route

#1.

[0044] Various techniques can be used by the attribute
welghting module 113 to determine the amount by which the
weights are adjusted. In general, the larger the margin
between the desirability scores of route #3 and route #1, the
greater the adjustment. In one particular embodiment, an
attribute weight 1s updated by the following equation:
w' =w +[gamma*corr|, where: w'. 1s the adjusted weight; w,
1s the original weight; gamma 1s the learning rate, a positive
scalar that determines how radically the weights are tuned;
and corr 1s a correction factor related to the margin between
the desirability scores of the two routes, where corr=
(Score,”'=Score, ) (attribute x,””-attribute x,").

[0045] Consider the following example. Assume:
[0046] x“=value of attribute x, for preferred route
#3=10;
[0047] Score,”=desirability score of route #3=200;
[0048] x'=value of attribute x, for non-preferred route
#1=2;
[0049] Score,” =desirability score of route #1=280;
[0050] weight w.=16; and
[0051] gamma=1.0.
[0052] Then:
[0053] w'=w +[gamma*corr]
[0054] w'=16+4[1.0%((280-200)/10-2)]
[0055] w'=16+10
[0056] w'=26
[0057] Recalling the desirability Score, =SUM w, x_, this

increase in w, by 10 will in turn increase Score# by
10*x #=10%*10=100, while increasing Score# by
10%*x #'=10%2=20, for a net increase of 80 in Score, . This
is just enough to bring Score #° into equality with Score #'.
If gamma had been less than 1.0, then Score #° would not
have caught up to Score,#'; and if gamma had been greater
than 1.0, it would have surpassed Score #'.

[0058] As with the other forms of learming discussed
herein, this learning process could allow for manual over-
rides by way of user feedback/imnput (e.g., a driver could
explicitly specity the importance of different attributes in
route selection). The process of generating driving direc-
tions based on the attribute models and attribute weights 1s
turther discussed with reterence to FIGS. 4a and 4b.
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[0059] Attnibute Model Learning Module

[0060] FIG. 2 1s a block diagram of the attribute model
learning module 107 of the adaptive navigation system of

FIG. 1, configured in accordance with one embodiment of
the present invention.

[0061] As can be seen, the attribute model learning mod-
ule 107 includes a road speed modeler 201, a favored route
modeler 203, a disfavored route modeler 205, a hazard
modeler 207, a map data update module 209, and a model
storage 211. Each of the illustrated components can be
implemented 1n software (e.g., C, C++, Java, or other
suitable programming language) that executes on a proces-
sor. However, other embodiments could be implemented, for
example, 1n hardware (such as 1n gate level logic or ASIC),
or firmware (e.g., microcontroller configured with I/O capa-
bility for receiving data from external sources and a number
of routines for implementing learning functions as described
herein), or some combination thereof. In addition, note that
the modules are shown as separate for purposes of illustra-
tion, and that other embodiments may have the various
functionalities or sub-sets thereof integrated into a single
module. Numerous configurations will be apparent 1n light
of this disclosure.

[0062] The road speed modeler 201 1s programmed or
otherwise configured to learn one or more models of a
driver’s road speeds. In more detail, a car navigation system
1s already aware of a vehicle’s position via the GPS receiver
101 and/or dead-reckoning sensor 103. The road speed
modeler 201 can therefore empirically measure average
speed along different road segments, and gradually build up
an empirical model of road speed. Alternatively, the road
speed modeler 201 can use other sensors, such as a speed-
ometer to build the road speed model. In any case, the
navigation system can then attempt to give “fastest route”
directions based on learned data. Note that this model 1s
customized not only to particular roads and their 1diosyn-
crasies (e.g., speed bumps, school zones, etc), but also to a
particular driver’s driving style. If a driver drives at 70 mph
on route 101, modeler 201 will learn that route 101 1s much
faster than local roads for that driver. Road segments are the
atomic units for which road speeds can be learned. A road
segment can be defined as a transition from one stretch of
road to another (e.g., from the middle of one city block to the
middle of the next block). For instance, entering a four-way
intersection, there are up to four such transitions from the
vehicle’s starting point (go straight, left turn, right turn, and
U-turn). This allows transition time to be captured in the
road-segment data, which often accounts for a significant
proportion of travel time 1n city driving.

[0063] In one particular embodiment, the road speed mod-
cler 201 1s configured to learn not just one aggregate road
model, but rather a plurality of alternate models, with each
alternate model corresponding to explicit and/or 1mplicit
conditions. As previously explained, explicit conditions
(e.g., such as time of day, day of week, driver ID, and other
relatively predictable or otherwise consistent conditions)
can be hard coded or otherwise “predefined” into the road
speed modeler 201 (or other modelers), so that alternate
models are provided (e.g., morming rush-hour model, eve-
ning rush-hour model, mid-day weekday model, and week-
end model). When the road speed modeler 201 collects 1ts
observations of road speed data, it files them into whichever
one of the alternate models currently applies (based on the
predefined/explicit condition that 1s satisfied). With regard to
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implicit conditions, the road speed modeler 201 can be
configured for learning an open-ended set of alternate road
speed models, each corresponding to some condition that
allects driving (e.g., whether the driver 1s 1n a hurry, whether
it’s raiming/snowing, whether 1t’s a holiday, whether there’s
a slowdown due to an accident or construction ahead, and so
on). In one such embodiment, clustering 1s used to form the
alternate models. For example, and as previously explained,
the well-known technique of hierarchical agglomerative
clustering (HAC) can be used. In one such configuration,
one “mini-model” of road speed 1s constructed for each
individual driving session, where a driving session 1s the
interval from turming the engine on to turming 1t off. The road
speed modeler 201 further defines a similarity metric that
measures the degree of similarity between two mini-models
of road speed by comparing, for example, the smoothed
distribution of road speeds on each road segment that 1s 1n
common between the two models. Two distributions may be
compared using any known measure of distribution distance,
such as Kullback-Leibler (KL) distance. If two mini-models
have little or no overlap, their similarity 1s undefined. At
cach step of HAC, the pair of mini-models that are most
similar to each other are identified by the similarity metric.
The two mini-models can then be merged by pooling their
data. This process 1s continued for available road speed
minmi-model pairs until a stopping criterion 1s reached. For
example, 11 there 1s no pair of mini-models remaining whose
similarity 1s above a pre-set threshold. Upon satisfaction of
the stopping criterion, a set of alternate models representing,
distinct road speed conditions remain.

[0064] These alternate road speed models eflectively cap-
ture differences due to predefined/explicit conditions (e.g.,
such as which family member 1s driving the car, time of day,
day of week, etc) as well as inferred/implicit conditions that
are not explicitly known to the navigation system (e.g.,
whether the driver 1s in a hurry, whether 1t’s raining/
snowing, whether 1t’s a holiday, whether there’s a slowdown
due to an accident/construction ahead, and so on). As will be
appreciated 1n light of this disclosure, other attribute mod-
clers such as the favored route modeler 203 and hazard
modeler 207, can be configured to provide a set of alternate
models, with each alternate corresponding to a predefined or
inferred condition.

[0065] The one or more road speed models learned by the
road speed modeler 201 are stored 1n the model storage 211,
and can be applied to future navigation sessions in a variety
of ways. Once a set of conditional variants has been pro-
duced, which one applies to any given driving session can be
determined. As previously explained, this process 1s rela-
tively straightforward with predefined conditions, because
explicit rules are used (e.g., this 1s the variant to be used
weekdays M-F, from 6:30 am to 9:30 am). But with mferred
conditions, there are no such rules. Thus, and 1n accordance
with one particular embodiment of the present invention, the
road speed modeler 201 employs probabilistic modeling
with Bayesian updates. In more detail, as a new driving
session 1s started, a prior probability (or weight) 1s mitially
assigned to each of the N inferred conditions. As driving
proceeds, the road speed modeler 201 collects observations
about driving speeds (or application of the brakes, or what-
ever other driving events are relevant to the attribute model
at 1ssue). Each time an observation 1s collected by the road
speed modeler 201, a determination 1s made as to how
consistent 1s that observation with each of the N inferred
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conditions. The road speed modeler 201 performs a Bayes-
1an update of the probability (or weight) on each of the N
conditions accordingly. Thus, at any moment 1n time, there
1s a set ol probabilities (or weights), one weight per condi-
tion, that indicates how likely 1t 1s that a particular condition
in fact applies to the current driving session. This set of
condition weights can be stored, for example, along with the
road speed models 1n the storage 211. The route generator
module 111 can then reason probabilistically from those
weights when generating route candidates. For instance,
assume a “rainy weather” condition has a weight of 0.8, and
a “dry weather” condition has a weight of 0.2. In this
example case, the rainy weather road speed model can be
used as opposed to the alternate dry weather road speed
model (based on the higher weight currently assigned to the
“raimny weather” condition relative to the weight currently
assigned to the “dry weather” condition). In addition, when
predicting travel time of a proposed route, the route gen-
erator module 111 can combine the travel time predictions of
the raimny-weather and dry-weather conditional variants of
the road speed model, using a weighted average with
weights 0.8 and 0.2, thereby using multiple conditional
variants of the road speed model to evaluate travel time.

[0066] This Bayesian scheme may be further varied, as
will be apparent 1n light of this disclosure. For example, the
change 1n probabilities (weights) can be capped at a pre-
defined time step (e.g., every N seconds) to reduce insta-
bilities in the system. Also, changing or otherwise manipu-
lating the probabilities early on i1n the driving session can
also be employed, until enough data 1s gathered to be
confident about which learned model best applies. Note that
in addition to using the learned road speed models to
improve route-finding, they can also be used to more accu-
rately predict travel times (e.g., for use 1 an “estimated
travel time” or “ETA” display). In addition, recall that
Bayesian reasoning requires a training set; namely, a set of
attribute values and the mmplicit condition to which they
have been assigned. For instance, 1f the implicit conditions
are rainy weather and dry weather, and 1t has been observed
that so far, the driver 1s averaging 35 mph over a given road
segment, then a training set can be used to indicate whether
an average speed ol 35 mph on that road segment 1s more
indicative of rainy weather or dry weather. Such a training
set 1s provided, for example, by the set of driving sessions
that were previously clustered into the rainy weather con-
dition and the dry weather condition as explained herein.

[0067] The road speed modeler 201 may also receive
optional user input and/or feedback relevant to road speeds.
Such optional mput can be used to correct or otherwise
adjust, for example, road speeds learned during anomaly
conditions (e.g., tratlic accident) that do not reflect the
typical speeds for a given road at a given time. In one such
embodiment, the road speed modeler 201 uses the optional
user mput/feedback to trump and replace any previous
learning for the particular road associated with the optional
input. Alternatively, the road speed modeler 201 factors the
optional user input/feedback into the existing model just as
any other additional road speed data i1s integrated, as
described herein. In such a case, the user can effectively bias
the learned models as desired.

[0068] The favored route modeler 203 1s programmed or
otherwise configured to learn one or more models of road
familiarity. In particular, the favored route modeler 203
observes which roads are frequently traversed, especially
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when the user 1s driving without using the navigation system
(e.g., observation mode, as opposed to navigation mode or
navigation-observation mode). The route generator module
111 can then use this road familiarity model to favor roads
with which the user 1s familiar when providing directions
(ellectively penalizing less familiar roads). Thus, the system
1s capable of providing directions based on more than just a
mimmal driving time goal, unlike conventional systems. The
favored route modeler 203 enables, for example, a more
complex route finding function that can reduce the prob-
ability of the driver making a wrong turn and/or expending
additional cognitive eflort. Note that the favored route
modeler 203 may also enable the route generator module 111
to provide route selections with fewer turns (assuming the
driver’s preferred routes have fewer turns). In a similar
tashion, the favored route modeler 203 may also enable the
route generator module 111 to provide more scenic route
selections with (assuming the driver’s preferred routes are

scenic). Other such benefits and/or features of the favored
route modeler 203 will be apparent 1n light of this disclosure.

[0069] The favored route modeler 203 also enables sum-
marized directions. In more detail, the navigation system
“knows” (based on mnformation provided by the favored
route modeler 203) that the driver 1s very familiar with a
particular highway and how to access that highway when in
a given local area. Assume, for example, that the driver
knows how to access route 101 when within five miles of a
known set of GPS coordinates. The favored route modeler
203, which receives GPS coordinates from GPS receiver
101, would indicate the favored status of and familiarity
with accessing route 101. Favored status and familiarity can
be indicated 1n a number of ways, such as an untamiliar road
penalty (as previously discussed), a familiar road bonus,
and/or a counter that counts the number of times a particular
road has been traveled in a given time period (e.g., roads
traveled 5 times or more within a 15 to 20 day period are
given a familiarity bonus). With such familiarity of route
101 so identified or otherwise known, directions provided to
the user by the route generator module 111 can be summa-
rized to “Take 101 North™ since the drniver already knows
how to access that route from his current location. Numerous
opportunities to provide summarized or concise directions
based on user familiarity are thus enabled. Note, however,
that the navigation system can be further configured to break
down summarized steps into detailed directions at the user’s
request (e.g., by operation of user interface 117 to allow for
the request to be made and route generator module 111 to
provide more detailed directions; alternatively, the detailed
directions can automatically be provided to the user and not
displayed unless requested by the user).

[0070] The favored route modeler 203 can also receive
optional user 1input/feedback to allow further customization
of the favored route models. For example, and in one
particular embodiment, roads that are believed to be familiar
to the user can be displayed 1n a different color and/or with
a “Tamiliar” label (e.g., a heart or star icon or the like). In one
such case, the navigation system allows the user to give
verbal or other feedback (e.g., by operation of the user
interface 117) confirming or disconfirming that the road 1s 1n
tact familiar to him, and/or one that he prefers/disprefers for
any reason. Such explicit user feedback/input can be used to
trump any previous learning (for a given route or segment)
by the favored route modeler 203.
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[0071] Note that such preferences (as well as road speeds
and other modeled attributes discussed herein) will vary
from one driver to the next, assuming more than one person
drives the vehicle equipped with the navigation system.
Thus, a driver ID mechanism can be implemented to prevent
confusing models of one driver with models of another
driver. In one such case, a login mechanism 1s used where
the driver 1D 1s keyed 1n, spoken, or otherwise entered (e.g.,
by operation of user interface 117). Likewise, the driver 1D
mechanism could even be automated, for example, such as
an ID mechanism based on a specially configured 1gnition
key, preferred seat and/or mirror settings, and/or a weight
sensor 1n the driver seat (assuming drivers can be distin-
guished by such parameters). Such parameters can be
received or otherwise imterrogated by a user ID module of
the navigation system, and then provided to the route
generator module 111. Any number of 1dentity determination
schemes (e.g., biometric sensors that enable touch or voice
recognition, or any other available sensors that uniquely
identify an individual driver) can be employed.

[0072] The distavored route modeler 205 1s programmed
or otherwise configured to learn a model of user dislikes. For
example, i the navigation system directs a user to make a
particular turn, and the user consistently does not make that
turn, then the disfavored route modeler 205 can assign a
“distavored turn” penalty or otherwise indicate a disfavored
status of that turn so that the route generator 111 will then
stop suggesting that turn (because of 1ts “poor” status 1n the
model). The turn could be, for example, illegal, diflicult, or
otherwise undesirable. For instance, the car might have too
large a turning radius to make a particular u-turn comiort-
ably. Other suggested route options that are consistently
rejected by the user can be assigned a penalty or designated
as distavored 1in a similar fashion.

[0073] Thus, the favored route modeler 203 1s for learning
preferences, and disfavored route modeler 205 1s for learn-
ing negative preferences (note that these complementary
functionalities can be integrated into a single module 1t so
desired). In one particular embodiment, either or both the
tavored route modeler 203 and disfavored route modeler 205
are configured to learn while the user 1s driving without
necessarily using the navigation system. In this sense, these
modules can operate 1n an observation mode or an obser-
vation-navigation mode. The modelers 203 and/or 205 (or
other suitable module included in the navigation system
such as the route generator module 111) can compare (after
the fact) the user’s seli-chosen route to a route that would
have been suggested by the navigation system. From this
comparison, the modelers 203 and/or 205 can systematically
learn, for example, to avoid driving certain routes, even
though 1t would have been shorter to go that way.

[0074] Like the favored route modeler 203, the distavored
route modeler 205 can also receive optional user input/
teedback to allow further customization of the disfavored
route models. In one such embodiment, the disfavored route
modeler 205 1s further configured to query the user for
explicit confirmation before learning to avoid a road/turn/
area. Such explicit user input/feedback would improve accu-
racy of the navigation system.

[0075] Also, and 1n a stmilar fashion to that discussed with
reference to the road speed modeler 201, the favored route
modeler 203 and/or the disfavored route modeler 205 can
employ clustering techmques to learn favored route models
for different inferred conditions (e.g., weather conditions,
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urgency of driver, traflic due to construction/accident/event,
ctc) that are determined by the different driving behaviors
observed by the system’s sensors (e.g., 101, 102, and/or
103). For example, the distavored route modeler 205 can be
configured to mtially learn a separate distavored route
model for each driving session (e.g., system 1nstructs driver
to turn left, but he did not; therefore the road segment
corresponding to that left turn gets a penalty within that
disfavored route mini-model 1n the form of a low value).
Clustering technmiques (e.g., HAC or other such suitable
technique) can then be applied to these disfavored route
minmi-models. This clustering may result, for mstance, 1n the
formation of two clusters: one cluster where the driver
refuses to make left turns, and another where he agrees to
(and does) make those same left turns. Such a distinction
may correspond, for example, to rush-hour vs. not rush-hour
(note that the inferred condition can be associated with a
more explicit condition of time). In any case, disfavored
and/or favored route mini-models can be clustered into two
or more alternate models, which can then be applied (as
appropriate, depending on condition weights as previously
discussed) to subsequent driving sessions.

[0076] Again, determining which favored/distavored
route model to apply can be computed by employing proba-
bilistic modeling with Bayesian updates. In more detail, as

a new driving session 1s started, the favored route modeler
203 (and/or the distavored route modeler 205, 1f so desired)
assigns a prior probability (or weight) to each of the N
inferred conditions (e.g., assume there 1s a sports stadium on
the route 1n question and the inferred conditions include a
“big event today” condition and a “no big event today”
condition). As driving proceeds, the favored route modeler
203 collects observations about speed, braking (or other
driving actions relevant to the favored route model). Each
time an observation 1s collected by the favored route mod-
cler 203, a determination 1s eflectively made as to how
consistent 1s that observation with each of the N inferred
conditions (e.g., slower speeds with significant braking
tends to indicate that stadium two miles down the road 1s
active). The favored route modeler 203 performs a Bayesian
update of the probability (or weight) on each of the N
conditions accordingly. Thus, at any moment in time, there
1s a set ol probabilities (or weights), one weight per condi-
tion, that indicates how likely 1t 1s that a particular condition
in fact applies to the current driving session. This set of
condition weights can be stored, for example, along with the
tavored route models 1n the storage 211. The route generator
module 111 can then reason probabilistically from those
weights when generating route candidates. In the stadium
example, assume the “big event today” condition has a
weight of 0.9, and the “no big event today” condition has a
weight of 0.1. In this example case, the “no stadium road”
model can be used as opposed to the alternate but normally
preferred “stadium road” model. Thus, the route generator
module 111 will use the “no stadium road” model, and direct
the driver to take the next right turn and along a back street
route past the stadium. Note that the user need not know of
the stadium or event schedule. Rather, the system can be
programmed, for mstance, to know the location of all major
stadiums and event centers. Thus, the system will have
explicit conditions (e.g., proximity to stadium and known
event time) and implicit conditions (e.g., based on slow
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speed and excessive braking). Given such conditions, the
system can automatically detour the driver around the sta-
dium/event tratfic.

[0077] In the embodiment shown 1n FIG. 2, the models
generated by the favored route modeler 203 and the dista-
vored route modeler 205 are stored 1n model storage 211.
Their respective condition weights can be stored in storage
211, and updated as data becomes available. The models and
condition weights can then be provided to or otherwise
accessed by the route generator module 111, so that person-
alized and adaptive driving directions can be provided to the
user.

[0078] The hazard modeler 207 1s programmed or other-
wise configured to learn a model of hazards. In one such
embodiment, the navigation system can i1dentity potentially
hazardous conditions by detecting roads that have narrow
passageways, high tratlic volume, and/or an above-average
incidence of avoidance maneuvers, such as sudden stops,
skids, swerves, horn-honking, or more severe indicators
such as airbag deployments. For example, 11 the navigation
system 1s equipped with suilicient accelerometers, 1t could
detect roads with a lot of potholes (due to vertical or z-axis
acceleration or movement of vehicle). Likewise, the system
could include braking sensors for detecting braking and
anti-lock brake activation, a horn sensor for sensing use of
horn (or other car horns), swerving sensor (for detecting
sudden turns of steering wheel at relatively high speeds),
proximity sensors (for detecting high traflic volume and
narrow passageways), impact sensors, and any other such
sensors 102. The hazard modeler 207 can recerve mnput from
available system sensors, and assign roads believed to be
hazardous (based on received sensor data) a hazard penalty.
Alternatively, or in addition to, hazard modeler 207 can track
road speed for use when the user 1s driving slowly. For
example, 1f the user 1s driving unusually slow (e.g., at a
speed 2 standard deviations below the normal speed), and 1s
brake-pumping and/or activating the antilock brakes more
often than usual on a given road, then that road segment’s
hazard level can be increased in the hazard model. As will
be explained 1n turn, such model data may be particularly
helptul for future route selection during inclement weather
(e.g., last time 1t snowed, the antilock brake feature activated
well-above the normal activation level for this particular
route; therefore, avoid suggesting this route during inclem-
ent weather). The resulting hazard model 1s stored in the
model storage 211. The route generator module 111 will then
avoid hazardous roads indicated by the model when finding
directions.

[0079] Also, and just as with other modelers discussed
herein, the hazard modeler 207 can be configured to learn
models of various explicit conditions, such as rush-hour
hazard model (which tends to avoid routes that include high
traflic volume during rush hour, where rear-end collisions
are frequent). Likewise, the hazard modeler 207 can be
configured to learn models of various implicit conditions, by
noticing that such conditions are correlated with observable
conditions. For example, the hazard modeler 207 may end
up learning one hazard model for snowy conditions, and an
alternate hazard model for dry conditions. In such a case, as
soon as 1t 1s determined that the driver 1s driving consistently
slower than usual 1n conjunction with defensive braking
(e.g., brake pumping over longer braking distances) in
accordance with the snowy condition hazard model, a
Bayesian update method as previously described can operate
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to assign more weight on the snowy condition hazard model
learned, and will make future road choices (e.g., and 1ssue
driving warmings) accordingly. Clustering techniques and
similarity metrics can be used here as well, as previously
described. For mstance, the hazard modeler 207 can mnitially
learn a hazard mini-model for each driving session, and
group the mini-models together based on a similarity metric.

[0080] The navigation system may further include report-
ing capabilities. For example, the hazard modeler 207 (or a
dedicated reporting module having access to models stored
in storage 211) could automatically report severe potholes to
the city where the pothole was encountered. In one such
case, once a pothole 1s detected, the navigation system can
auto-dial a cell phone (e.g., integrated into the system, or
docked in the system by the user) and deliver a “hazard
message.” The hazard message can be, for example: “Pot-
hole at Main and 177 Street” as articulated by the driver, or
a voice generation module that receives GPS coordinates of
the pothole from the GPS receiver 101. Alternatively, the
hazard message can be a computer generated code (e.g., a
series of pulse tones of the cell phone). In one such case, the
code 1s selected from a pre-established set of codes included
in a reporting program for the area (e.g., local, regional, or
national reporting program sponsored by government).

[0081] If the driver 1s driving aggressively on a road
segment that the navigation system knows 1s hazardous
(based on the learning of hazard modeler 207), the naviga-
tion system can be further configured to warn (e.g., by a
gentle beep or pre-recorded voice message of: “this road has
been reported as hazardous™ or “you are driving at above-
average speeds for this particular road”). The user could
disable such warnings from being 1ssued 1f so desired, or
dismiss one particular warning that continues to be delivered
during a driving session. In general, such warnings could be
tully configurable by the user.

[0082] The map update module 209 1s programmed or
otherwise configured to learn map updates. In more detail, 1f
the navigation system observes (based on data GPS receiver
101) that the driver 1s driving along a non-road (e.g.,
according to map data in storage 109), the map update
module 209 can learn that there 1s a road there. The road may
be, for example, a new road or a road that simply has not
been previously documented in available map data. In some
cases, the map update module 209 can also learn about the
removal or reconstruction of a road or other route attribute
as well. For instance, 1f the map update module 209 observes
that the driver 1s accelerating up to 65 mph to get onto a
freeway 200 feet later than where module 209 thought the
on-ramp was (e.g., based on data received by module 209
from GPS receiver 101), and the driver never takes the
on-ramp that 1t thought was there, then 1t 1s probably safe to
infer that the on-ramp has been reconstructed. In the
embodiment shown, the user can provide optional user
teedback/input to the map update module 209 to directly
indicate such new roads or changed route conditions. Such
user provided data can be stored in storage 211 for access by
the route generator module 111 and/or integrated into the
map data in the map data storage 109. In addition, the
navigation system can be configured to report updates back
to the mapping company (e.g., by operation of a reporting,
module, or by user feedback to the mapping company).
[0083] Attribute Model Generation Methodology

[0084] FIG. 3 illustrates a method for generating attribute
models for use 1n the adaptive navigation system of FIG. 1,
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in accordance with one embodiment of the present mnven-
tion. This method can be carried out, for example, by the
attribute model learning module 107, as described with
reference to FIGS. 1 and 2. As previously explained, this
module (or its sub-modules) can be implemented as execut-
able code encoded on one or more machine-readable medi-
ums, 1n accordance with one particular embodiment.

[0085] As previously explained, an attribute model 1s
derived from one or more driving sessions, and may include
a mapping from road segment to a measured (or derived)
attribute value, or an estimate of the attribute value for those
road segments not yet actually traveled on by the user. The
mapping gives a summary statistic (such as mean or median
or other suitable statistic) of the attribute values that have
been observed i driving sessions for that segment. The
attribute value for unseen road segments can be an a default
value such as an estimate summary statistic, as previously
explained.

[0086] Referring now to the specific details of FIG. 3, the
method includes applying 305 attribute estimation rules to
sensor data to compute a value for each desired attribute
along each road segment covered by each driving session.
As previously explained, the attribute estimation rules can
be direct “identity” rules (where the attribute value can be
directly measured, such as for road speed measured by a
speedometer or derived from GPS data), or indirect rules
(where the attribute value can be inferred or otherwise
derived from one or more measurements, such as for road
safety as indicated by temperature, skidding, antilock brake
activation, and/or other such i1ce detection sensors). For
unseen (not yet traveled by the user) road segments not yet
traveled, the method includes computing 310 a summary
statistic (e.g., or otherwise assigning a default value). The
method further includes learning conditional variants of
each attribute model. In more detail, and with reference to
FIG. 3, the method continues with determining 325 if an
explicit or implicit condition (or both) applies to a given
conditional variant of a model.

[0087] For explicit conditions, the method includes defin-
ing 330 a bucket (any data bin having known boundaries,
such as a road speed bucket for a specific time period 1n the
day) for each explicit condition of a target attribute, and
storing 3335 observed attribute data for all road segments
(from all driving sessions) into the appropriate buckets. The
method continues with forming 340 a conditional variant
model for each bucket by merging the attribute data 1n that
bucket (e.g., taking mean or median). The result may be, for
example, a road speed model for each of rush-hour morming,
mid-day, rush-hour evening, and off-peak. The method may
turther include determining 343 if there are more attributes.
If so, the processing of steps 330 through 343 1s repeated for
cach of those attributes. Note that this multi-attribute pro-
cessing can be done senally (one attribute at a time) or 1n
parallel, depending on available processing power.

[0088] For implicit conditions, the method includes form-
ing 350 (for each driving session) a mini-model for a target
attribute by statistically merging session attribute data. The
method continues with identifying 355 pairs of like mini-
models using a similarity metric as previously explained
(e.g., HAC or other suitable clustering algorithm), and
merging 360 data from pairs of like mini-models 1nto one
model (e.g., by aggregating data from each of the two
mini-models). This combined model 1s essentially a model
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built from the union of the dniving sessions from which the
two like mini-models were built.

[0089] The method includes determining 365 11 a stopping
criterion 1s met. If not, then the identifying 355 and merging
360 steps are repeated. For instance, the similarity metric 1s
applied to each pair of models, and the pair of models with
the highest similarity rating 1s 1dentified (step 355). If this
highest similarity 1s high enough (e.g., based on a predefined
threshold or other stopping criterion as determined at step
365), then data from the two mini-models 1s merged to form
a combined model (step 360). The i1dentifying 335 and
merging 360 steps are repeated until the highest similarity
identified 1s not high enough, at which point processing for
that particular target attribute stops. At that point, the method
may further include determining 370 1f there are more
attributes. If so, the processing of steps 350 through 370 1s
repeated for each of those attributes. Just as with explicit
conditions, such multi-attribute processing can be done
serially (one attribute at a time) or 1n parallel.

[0090] If there are no more attributes to process (as
determined at steps 345 and 370), the method continues with
storing 375 the resulting conditional variants of each attri-
bute model, so that they can subsequently be accessed by a
route generator as discussed herein. Note that explicit or
implicit conditional variants of an attribute model can be
learned, or both explicit and implicit conditional variants of
an attribute model can be learned. For example, the mea-
sured or otherwise observed data could first be partitioned
into buckets by explicit conditions, and then clustered (e.g.,
using HAC or other suitable algorithm) within each bucket
to form 1mplicit conditions within each explicit condition.
Alternatively, the data could first be clustered into implicit
conditions, and then each implicit condition can be broken
down 1nto buckets corresponding to the explicit conditions.
In this sense, FIG. 3 may include additional loops (e.g., one
in each of the explicit and implicit loops), where for each
attribute being processed, a determination can be made as to
whether there are more conditions for a target attribute. If so,
the method repeats from step 325. Such an embodiment
allows for the processing of both implicit and explicit
conditions for the target attribute.

[0091] Route Generation Methodology

[0092] FIGS. 4a and 4b 1llustrates a method for generating
driving directions based on attribute models, 1n accordance
with one embodiment of the present invention. This method
can be carried out, for example, by the route generator
module 111 and the attribute weighting module 113, as
described with reference to FIG. 1. As previously explained,
such modules (or their sub-modules) can be implemented as
executable code encoded on one or more machine-readable
mediums, 1n accordance with one particular embodiment.

[0093] The method begins with recerving 405 a route
request from the user, including a target destination. The
target destination can be provided via a user interface, as
typically done (e.g., key pad or verbal entry). The method
continues with receiving 410 current time data and the
current location of the user, such as that received from a GPS
receiver and a dead-reckoning sensor. Such current time and
user location data can be used 1n time-sensitive route gen-
eration (e.g., 1t 1s currently 7 am, so use rush hour models),
as will be apparent in light of this disclosure.

[0094] The method continues with generating 415 a set of
candidate routes. In one particular case, each route may
include one or more segments. As previously explained, a
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segment 1s the basic unit for which road attributes (e.g.,
speed, hazard, and user preference) can be learned. For a
target attribute of a candidate route, the method continues
with accessing 420 one or more models of conditional
variants of that attribute. Recall that for a given attribute,
there 1s a set of one or more models for conditional variants
of that attribute (e.g., for a road speed attribute, there may be
two models corresponding to wet-weather driving and dry-
weather driving). These conditional variant models can be

accessed, for example, from a storage as shown 1n FIGS. 1
and 2 (storage 109 and/or 211).

[0095] The methodology operates to determine which of
these conditional variant models to apply to the current
driving session. This can be accomplished, for example, by
assigning a probability to each conditional variant. In more
detail, the method continues with determining 425 1f a
conditional variant corresponds to an explicit or implicit
condition. For an explicit condition, the method continues
with assigning 430 a probability of 1 to the conditional
variant model that corresponds to the explicit condition
(e.g., rush-hour road speed model that applies during 6 am-9
am), and assigning a probability of 0 to other models (e.g.,
mid-day and weekend road speed models). For an implicit
condition, the method includes assigning 435 a probability
to each conditional variant model of the target attribute,
using Bayesian reasoning as previously explained (e.g.,
assigning 0.8 for the “rainy weather” condition, and 0.2 for
the “dry weather” condition, based on measured, inferred, or
otherwise observed data of the current driving session). The
probability for a model can be assigned, for example, by
starting with a prior probability proportional to how many
driving sessions that model was dernived from, and then
adjusting this probability according to how well that model
explains the observable measurements that have been seen
for the current driving session so far (e.g., if the measure-
ments so far are consistent with road speeds for driving in
rainy weather, then the wet-weather conditional varant
model will get a higher probability. Attribute estimation
rules (such as those used 1n ofi-line model learning, as
previously discussed), can be used to convert from observ-
able measurements of the current driving session to attribute
values. In one particular embodiment, the method may
include recomputing the probabilities periodically during
the current driving session. This 1s because the longer the
current driving sessions goes on, the more information will
be available about the driving conditions (e.g., the user may
skid or engage anti-lock brakes), thereby enabling the cal-
culation of more accurate probabilities about which condi-
tional variants to apply 1n route scoring.

[0096] The method continues with computing 440 a value
of the target attribute based on the conditional variant model
having highest probability. In one particular embodiment,
once probabilities have been assigned to each conditional
variant, the expected value of the attribute for a candidate
route can be calculated as a weighted average (e.g., sum over
the conditional variants, and collect the probabaility of the 1th
conditional variant multiplied by the attribute value pre-
dicted by the 1th conditional variant). This yields the value
for the attribute as predicted by the combination of all of the
conditional varniants of the model for the attribute. The
method may further include determiming 445 11 there are
more attributes. I so, the processing of steps 420 through
445 1s repeated for each of those attributes for the target
route. Again, such multi-attribute processing can be done
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serially (one attribute at a time) or 1n parallel. If there are no
more attributes to process (as determined at step 445), the
method continues with determining 450 11 there are more
candidate routes to process. It so, the processing of steps 420
through 450 1s repeated for each of those routes. The result
of this processing 1s that each of the candidate routes 1is
assigned one or more attribute values which can be used to
score that route.

[0097] In this particular embodiment, and as previously
explained, once all the candidate routes are processed, the
method continues with assigning 455 an attribute weight to
each attribute of each candidate route, based on attribute
preferences of the user. Imtially, these attribute weights can
be set to a user-configurable or otherwise default value
which 1s then refined based on subsequent user input, as
explained herein. The mitial preferences can be provided,
for example, via a voice command and/or data entry user
interface. For discussion purposes, assume that the user
prioritizes attributes in the following order: (1) road speed,
(2) road familiarity, and (3) road safety. Thus, all other
things equal, when a given segment has the attribute of
consistently high road speed, it will generally be scored
higher than those segments not possessing that attribute (due
to the attribute weight). Alternatively, attributes can be
cllectively turned-off (e.g., only consider road speed, and
ignore familiarity and safety attributes). The user can turn
attributes on or off via the user interface. User preferences
can be stored 1n a configuration file accessible during driving
sessions. The configuration file can be updated by the user
(via the user interface) as preferences change.

[0098] The method continues with computing 460 a desir-
ability score for each candidate route, using the attribute
weights and attribute values computed for that route, as
previously explained (e.g., Score, =SUM w, x.). The method
continues with sorting 465 the candidate routes based on
their desirability scores, and providing 470 the top n high
scoring routes for user selection (which may include all or
a subset of the candidate routes). The user can preview the
scored routes via a user interface, i so desired. The method
continues with receiving 475 a selected route from the user,
and then determining 480 11 the attribute weights need to be
adjusted based on that user selection. If so, the method
continues with adjusting 485 the attribute weights based on
the user selection, as previously explained. The selected
route can then be presented to the user for use 1n actual
navigation to the target location.

[0099] The foregoing description of the embodiments of
the mvention has been presented for the purposes of illus-
tration and description. It 1s not intended to be exhaustive or
to limit the mvention to the precise form disclosed. Many
modifications and varnations are possible 1in light of this
disclosure. It 1s intended that the scope of the mvention be
limited not by this detailed description, but rather by the
claims appended hereto.

1.-20. (canceled)

21. A computer-implemented method for updating map
data, comprising;:
obtaining, by one or more processors, sensor data from
one or more vehicle sensors of a vehicle during a
driving session traversing one or more road segments,

wherein map data available to the vehicle comprises the
one or more road segments;

identifying, by the one or more processors, whether the
vehicle 1s traveling along a path which 1s distinct from
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the one or more road segments, based on the sensor
data and the map data available to the vehicle;

determining, by the one or more processors, an inference
associated with an update to be made to the map data
availlable to the vehicle, based on information associ-
ated with the path which 1s distinct from the one or
more road segments; and

updating, by the one or more processors, the map data

available to the vehicle based on the inference.

22. The computer-implemented method of claim 21,
wherein updating the map data available to the vehicle
includes removing one or more road segments from the one
Or more segments.

23. The computer-implemented method of claim 21,
wherein updating the map data available to the vehicle
includes adding one or more road segments to the map data.

24. The computer-implemented method of claim 21,
wherein updating the map data available to the vehicle
includes moditying one or more road segments from the one
Or more segments.

25. The computer-implemented method of claim 21, fur-
ther comprising providing, by the one or more processors,
information associated with updating the map data to a
service which provides the map data to the vehicle.

26. The computer-implemented method of claim 21, fur-
ther comprising receiving, by the one or more processors
from a user associated with the vehicle, information asso-
ciated with the update to be made to the map data available
to the vehicle.

27. The computer-implemented method of claim 21,
wherein 1dentifying, by the one or more processors, whether
the vehicle 1s traveling along the path which 1s distinct from
the one or more road segments, based on the sensor data and
the map data available to the vehicle, comprises a navigation
system learning a presence of a road segment not found 1n
the map data available to the vehicle, based on speed
information associated with the vehicle and comparing
global positioning system data associated with the path with
the map data available to the vehicle.

28. The computer-implemented method of claim 21,
wherein at least part of a route to a destination includes the
one or more road segments, the method further comprising:

storing, by the one or more processors, the updated map

data 1n a memory; and

computing, by the one or more processors, an updated

route to the destination based on the updated map data.

29. The computer-implemented method of claim 28,
wherein computing, by the one or more processors, the
updated route to the destination based on the updated map
data, comprises:

generating a plurality of candidate routes to the destina-

tion based on a location of the vehicle and the updated
map data,

accessing one or more conditional variant models learned

from previous driving sessions and which are associ-
ated with a target attribute of the plurality of candidate
routes,

probabilistically determining which of the one or more

conditional variant models to apply to the drniving
session by evaluating probabilities assigned to each of
the one or more conditional variant models based on
the driving session,

scoring the plurality of candidate routes using the deter-

mined conditional variant model, and
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automatically selecting one of the plurality of candidate
routes as the updated route to the destination or pro-
viding at least one of the plurality of candidate routes
for selection as the updated route by a user associated
with the vehicle, based on the scoring of the plurality
of candidate routes.

30. The computer-implemented method of claim 21,
wherein

identifying, by the one or more processors, whether the
vehicle 1s traveling along the path which 1s distinct
from the one or more road segments, based on the
sensor data and the map data available to the vehicle,
comprises comparing global positioning system data
associated with the path with a first road segment
among the one or more road segments, wherein the first
road segment connects to a second road segment
among the one or more road segments, and

determining, by the one or more processors, the inference
associated with the update to be made to the map data
availlable to the vehicle, based on information associ-
ated with the path which 1s distinct from the one or
more road segments, comprises inferring the first road
segment has been removed or reconstructed when the
path 1s spaced apart from the first road segment and the
vehicle travels along the path to connect to the second
road segment.

31. A computing system, comprising:
one or more processors; and

one or more memories including instructions that, when

executed by the one or more processors, cause the

processors to perform operations, the operations com-
prising:

obtaining sensor data from one or more vehicle sensors

ol a vehicle during a driving session traversing one

or more road segments, wherein map data available

to the vehicle comprises the one or more road
segments,

identifying whether the vehicle 1s traveling along a path
which 1s distinct from the one or more road seg-
ments, based on the sensor data and the map data
available to the vehicle,

determining an inference associated with an update to
be made to the map data available to the vehicle,
based on information associated with the path which
1s distinct from the one or more road segments, and

updating the map data available to the vehicle based on
the inference.

32. The computing system of claim 31, wherein updating
the map data available to the vehicle includes at least one of
removing one or more road segments from the one or more
segments, adding one or more road segments to the map
data, or modifying one or more road segments from the one
Or more segments.

33. The computing system of claim 31, wherein 1denti-
tying whether the vehicle 1s traveling along the path which
1s distinct from the one or more road segments, based on the
sensor data and the map data available to the vehicle,
comprises a navigation system learning a presence of a road
segment not found 1n the map data available to the vehicle,
based on speed mformation associated with the vehicle and
comparing global positioning system data associated with
the path with the map data available to the vehicle.
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34. The computing system of claim 31, wherein

at least part of a route to a destination includes the one or
more road segments, and

the operations further comprise:

storing the updated map data 1n at least one of the one
Oor more memories; and

computing an updated route to the destination based on
the updated map data.

35. The computing system of claim 34, wherein comput-

ing the updated route to the destination based on the updated
map data, comprises:

generating a plurality of candidate routes to the destina-
tion based on a location of the vehicle and the updated
map data,

accessing one or more conditional variant models learned
from previous driving sessions and which are associ-
ated with a target attribute of the plurality of candidate
routes,

probabilistically determining which of the one or more
conditional variant models to apply to the drniving
session by evaluating probabilities assigned to each of
the one or more conditional variant models based on
the driving session,

scoring the plurality of candidate routes using the deter-
mined conditional variant model, and

automatically selecting one of the plurality of candidate
routes as the updated route to the destination or pro-
viding at least one of the plurality of candidate routes
for selection as the updated route by a user associated
with the vehicle, based on the scoring of the plurality
of candidate routes.

36. The computing system of claim 31, wherein

identitying whether the vehicle 1s traveling along the path
which 1s distinct from the one or more road segments,
based on the sensor data and the map data available to
the vehicle, comprises comparing global positioning
system data associated with the path with a first road
segment among the one or more road segments,
wherein the first road segment connects to a second
road segment among the one or more road segments,
and

determining the inference associated with the update to be
made to the map data available to the vehicle, based on
information associated with the path which 1s distinct
from the one or more road segments, comprises infer-
ring the first road segment has been removed or recon-
structed when the path 1s spaced apart from the first
road segment and the vehicle travels along the path to
connect to the second road segment.

37. A vehicle, comprising:
one or more vehicle sensors;
one or more processors; and

one or more memories including nstructions that, when
executed by the one or more processors, cause the one
or more processors to perform operations, the opera-
tions comprising:
obtaining sensor data from the one or more vehicle
sensors during a driving session traversing one or
more road segments, wherein map data available to
the vehicle comprises the one or more road seg-
ments,
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identifying whether the vehicle 1s traveling along a path
which 1s distinct from the one or more road seg-
ments, based on the sensor data and the map data
available to the vehicle,

determining an inference associated with an update to
be made to the map data available to the vehicle,
based on information associated with the path which
1s distinct from the one or more road segments, and

updating the map data available to the vehicle based on
the inference.

38. The vehicle of claim 37, wherein 1dentifying whether
the vehicle 1s traveling along the path which 1s distinct from
the one or more road segments, based on the sensor data and
the map data available to the vehicle, comprises a navigation
system learning a presence of a road segment not found 1n
the map data available to the vehicle, based on speed
information associated with the vehicle and comparing
global positioning system data associated with the path with
the map data available to the vehicle.

39. The vehicle of claim 37, wherein

at least part of a route to a destination includes the one or

more road segments, and

the operations further comprise:

computing an updated route to the destination based on
the updated map data by:
generating a plurality of candidate routes to the
destination based on a location of the vehicle and
the updated map data,
accessing one or more conditional variant models
learned from previous driving sessions and which
are associated with a target attribute of the plural-
ity of candidate routes,
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probabilistically determiming which of the one or
more conditional variant models to apply to the
driving session by evaluating probabilities
assigned to each of the one or more conditional
variant models based on the driving session,
scoring the plurality of candidate routes using the
determined conditional variant model, and
automatically selecting one of the plurality of candidate
routes as the updated route to the destination or pro-
viding at least one of the plurality of candidate routes
for selection as the updated route by a user associated
with the vehicle, based on the scoring of the plurality
of candidate routes.
40. The vehicle of claim 37, wherein
identifying whether the vehicle 1s traveling along the path
which 1s distinct from the one or more road segments,
based on the sensor data and the map data available to
the vehicle, comprises comparing global positioning
system data associated with the path with a first road
segment among the one or more road segments,
wherein the first road segment connects to a second
road segment among the one or more road segments,
and
determiming the inference associated with the update to be
made to the map data available to the vehicle, based on
information associated with the path which 1s distinct
from the one or more road segments, comprises inier-
ring the first road segment has been removed or recon-
structed when the path 1s spaced apart from the first
road segment and the vehicle travels along the path to
connect to the second road segment.

¥ o # ¥ ¥



	Front Page
	Drawings
	Specification
	Claims

